用户名: 密码: 验证码:
废砖基质折流式垂直流人工湿地处理二级生化尾水
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tail Water Purification Efficiency of Baffled Vertical-flow Constructed Wetland Using Broken Bricks as Substrate
  • 作者:张国珍 ; 尚兴宝 ; 武福平 ; 亢瑜
  • 英文作者:ZHANG Guo-zhen;SHANG Xing-bao;WU Fu-ping;KANG Yu;School of Environmental and Municipal Engineering,Lanzhou Jiaotong University;Lanzhou Branch,North China Municipal Engineering Design and Research Institute Co.Ltd.;
  • 关键词:折流式垂直流人工湿地 ; 尾水 ; 废砖块 ; 水力负荷
  • 英文关键词:baffled vertical-flow constructed wetland;;tail water;;broken brick;;hydraulic load
  • 中文刊名:中国给水排水
  • 英文刊名:China Water & Wastewater
  • 机构:兰州交通大学环境与市政工程学院;中国市政工程华北设计研究总院有限公司兰州分公司;
  • 出版日期:2019-05-01
  • 出版单位:中国给水排水
  • 年:2019
  • 期:09
  • 基金:甘肃省重点研发计划项目(17YF1NA056);; 国家自然科学基金资助项目(51768031)
  • 语种:中文;
  • 页:109-114
  • 页数:6
  • CN:12-1073/TU
  • ISSN:1000-4602
  • 分类号:X703
摘要
秉着"以废治废"的理念,将建筑垃圾废砖块用作人工湿地填料,用折流式垂直流的运行方式研究人工湿地系统在0. 15、0. 25、0. 35 m~3/(m~2·d)这3种水力负荷条件下对二级生化尾水的净化效果和污染物沿程变化规律。结果表明:废砖块可作为系统生物膜附着生长的载体,并适合湿地植物的正常生长,对尾水中污染物的去除有积极作用。折流式垂直流人工湿地在3种不同水力负荷条件下均可以显著削减进水污染物负荷,出水氮、磷的浓度均随着水力负荷的增加而增加。在0. 15 m~3/(m~2·d)的低水力负荷条件下,系统对COD、NH_4~+ -N、TN和TP的平均去除率可达到66. 52%、72. 10%、56. 53%和91. 55%,出水COD和TP浓度低于《地表水环境质量标准》(GB3838—2002)中的Ⅲ类水体标准限值。3种水力负荷条件下,COD、NH_4~+ -N、TN和TP浓度沿程逐渐降低,下流池对污染物的去除效率明显高于上流池,尤其在进水端表层0~30 cm范围内污染物均有一个快速降解的过程。
        According to the concept of using "waste"for wastewater treatment,an innovative application that used the broken bricks as the main substrate in baffled vertical-flow constructed wetland was researched. The purification effect and the variation of pollutants along the experiment flow under three hydraulic loading rates [0. 15 m~3/ (m~2·d),0. 25 m~3/ (m~2·d) and 0. 35 m~3/ (m~2·d) ]were evaluated. The results showed that the broken bricks from construction waste could be served as the carrier for the biofilm formation and were suitable for the normal growth of wetland plants,which had a positive effect on the removal of pollutants in the tail water. The baffled vertical-flow constructed wetland significantly reduced the influent pollutants loading in all three hydraulic loading conditions. The concentration of nitrogen and phosphorus in effluent rose with the increase of hydraulic loading rates.Under low hydraulic loading condition of 0. 15 m~3/ (m~2·d),the average removal rates of COD,NH_4~+ -N,TN and TP reached 66. 52%,72. 10%,56. 53% and 91. 55%,respectively; in addition,the effluent COD and TP concentrations had met the class Ⅲ water standard in Environmental Quality Standards for Surface Water (GB 3838-2002). Under the different hydraulic loadings,COD,NH_4~+ -N,TN and TP concentrations demonstrated a gradually downward trend along the experiment flow direction.Furthermore,the removal efficiency of pollutants in down-flow tank was significantly higher than that in up-flow tank; especially,a rapid degradation process existed in the surface layer (0-30 cm).
引文
[1]张丽,朱晓东,邹家庆.人工湿地深度处理城市污水处理厂尾水[J].工业水处理,2008,28(1):85-87.Zhang Li,Zhu Xiaodong,Zou Jiaqing.Application of constructed wetland to the advanced treatment of effluent in a municipal sewage plant[J].Industrial Water Treatment,2008,28(1):85-87(in Chinese).
    [2]韩瑞瑞,袁林江,孔海霞.复合垂直流人工湿地净化污水厂二级出水的研究[J].中国给水排水,2009,25(21):50-52.Han Ruirui,Yuan Linjiang,Kong Haixia.Purification of secondary effluent from WWTP by integrated verticalflow constructed wetland[J].China Water&Wastewater,2009,25(21):50-52(in Chinese).
    [3]谷先坤,王国祥,刘波,等.复合垂直流人工湿地净化污水厂尾水的研究[J].中国给水排水,2011,27(3):8-11.Gu Xiankun,Wang Guoxiang,Liu Bo,et al.Advanced purification of effluent from sewage treatment plant by integrated vertical-flow constructed wetland[J].China Water&Wastewater,2011,27(3):8-11(in Chinese).
    [4]Yu D,Wiliński P R,Dzakpasu M,et al.Impact of hydraulic loading rate and season on water contaminant reductions integrated constructed wetlands[J].Wetlands,2011,31(3):499-509.
    [5]杨林,李咏梅.组合人工湿地处理工业园区污水厂尾水的中试研究[J].环境工程学报,2012,6(6):1846-1850.Yang Lin,Li Yongmei.Pilot-scale study on advanced treatment of tail-water from wastewater treatment plant in industrial park using hybrid constructed wetland system[J].Chinese Journal of Environmental Engineering,2012,6(6):1846-1850(in Chinese).
    [6]许明,储时雨,蒋永伟,等.太湖流域化工园区污水处理厂尾水人工湿地深度处理实验研究[J].水处理技术,2014,40(5):87-91.Xu Ming,Chu Shiyu,Jiang Yongwei,et al.Advancement treatment of a constructed wetland system for the tailwater of chemical industrial park wastewater treatment plant in Taihu Lake Basin[J].Technology of Water Treatment,2014,40(5):87-91(in Chinese).
    [7]Deblina G,Brij G.Effect of hydraulic retention time on the treatment of secondary effluent in a subsurface flow constructed wetland[J].Ecol Eng,2010,36(8):1044-1051.
    [8]王飞宇,洪剑明,靖德兵,等.人工湿地生态系统污水净化研究进展[J].安徽农业科学,2009,37(12):5641-5643,5689.Wang Feiyu,Hong Jianming,Jing Debing,et al.Progress in sewage purification of artificial wetland ecosystem[J].Journal of Anhui Agricultural Sciences,2009,37(12):5641-5643,5689(in Chinese).
    [9]翟旭娜.以建筑废砖为吸附剂去除水中污染物的可行性研究[D].西安:西安建筑科技大学,2012.Zhai Xuna.Feasibility Study on the Removal of Pollutants in Wastewater Using Construction Waste Brick as an Adsorbent[D].Xi’an:Xi’an University of Architecture and Technology,2012(in Chinese).
    [10]Otto R S,Joel A B,Paul B H,et al.Plant species and temperature effects on the k-C*first-order model for COD removal in batch-loaded SSF wetlands[J].Ecol Eng,2006,26(2):100-112.
    [11]栾晓丽,王晓,赵钰,等.复合垂直流与潜流人工湿地沿程脱氮除磷对比研究[J].环境污染与防治,2009,31(11):26-29,34.Luan Xiaoli,Wang Xiao,Zhao Yu,et al.Purified efficiency of nitrogen and phosphate through two types of constructed wetlands[J].Environmental Pollution and Control,2009,31(11):26-29,34(in Chinese).
    [12]程龙,李怀,阎百兴,等.无植物水平折流式潜流人工湿地对氮和磷的净化效果[J].湿地科学,2016,14(2):219-225.Cheng Long,Li Huai,Yan Baixing,et al.The nitrogen and phosphorus removal efficiency of horizontal baffle subsurface flow constructed wetland without plants[J].Wetland Science,2016,14(2):219-225(in Chinese).
    [13]帖靖玺,郑正,钟云,等.潜流-上行垂直流复合人工湿地对氮磷去除效果[J].生态学杂志,2006,25(3):265-269.Tie Jingxi,Zheng Zheng,Zhong Yun,et al.Removal of nitrogen and phosphorus by integrated subsurface flowupward vertical flow constructed wetland process[J].Chinese Journal of Ecology,2006,25(3):265-269(in Chinese).
    [14]Antoniou P,Hamilton J,Koopman B,et al.Effect of temperature and p H on the effective maximum specific growth rate of nitrifying bacteria[J].Water Res,1990,24(1):97-101.
    [15]卢少勇,金相灿,余刚.人工湿地的氮去除机理[J].生态学报,2006,26(8):2670-2677.Lu Shaoyong,Jin Xiangcan,Yu Gang.Nitrogen removal mechanism of constructed wetland[J].Acta Ecologica Sinica,2006,26(8):2670-2677(in Chinese).
    [16]连小莹,金秋,李先宁,等.氮形态对人工湿地氮去除效果的影响[J].环境科技,2011,24(1):26-28.Lian Xiaoying,Jin Qiu,Li Xianning,et al.Effect of nitrogen forms on denitrifying efficiency in constructed wetlands[J].Environmental Science and Technology,2011,24(1):26-28(in Chinese).
    [17]Lin Y F,Jing S R,Wang T W,et al.Effects of macrophytes and external carbon sources on nitrate removal groundwater in constructed wetlands[J].Environ Pollut,2002,199(3):413-420.
    [18]Lantzke L R,Mitchell D S,Heritage A D,et al.A model of factors controlling orthophosphates removal in planted vertical flow wetlands[J].Ecol Eng,1999,12(1/2):93-105.
    [19]黄德锋.人工湿地净化富营养化景观水的效果及机理研究[D].上海:同济大学,2007.Huang Defeng.Study on Purification Eutrophic Scenic Water and the Mechanisms with Constructed Wetlands[D].Shanghai:Tongji University,2007(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700