用户名: 密码: 验证码:
农药污染土壤的生物强化修复技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bioaugmentation Remediation of Pesticide-contaminated Soil:A Review
  • 作者:高寒 ; 陈娟 ; 王沛芳 ; 王超
  • 英文作者:GAO Han;CHEN Juan;WANG Peifang;WANG Chao;Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University;
  • 关键词:农田土壤 ; 农药污染 ; 生物强化 ; 修复
  • 英文关键词:Farmland soil;;Pesticide contamination;;Bioaugmentation;;Remediation
  • 中文刊名:土壤
  • 英文刊名:Soils
  • 机构:浅水湖泊综合治理与资源开发教育部重点实验室河海大学;
  • 出版日期:2019-06-15
  • 出版单位:土壤
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金委创新群体项目(51421006);; 国家自然科学基金重点项目(41430751)、国家自然科学基金面上项目(51779077)、国家自然科学基金重大研究计划培育项目(91747104);; 中央高校科研基本业务费项目(2016B04014);; 湖泊与环境国家重点实验室开放基金项目(2016SKL013);; 国家重点研发计划项目(2018YFC0407604);; 江苏省高等学校大学生创新创业训练计划项目(201710294007Y)资助
  • 语种:中文;
  • 页:9-17
  • 页数:9
  • CN:32-1118/P
  • ISSN:0253-9829
  • 分类号:X53;X592
摘要
生物强化作为一种新型、高效的生物修复技术在污染环境治理中具有独特优势。针对目前土壤农药污染现状,本文介绍了土壤微生物修复方法中的生物强化技术的概念及内涵,探讨了在污染土壤环境中影响生物强化修复效率的生物及非生物因素,重点阐述了生物强化技术在4大类农药(有机氯类、有机磷类、拟除虫菊酯类杀虫剂和三嗪类除草剂)污染土壤修复中的研究进展及应用实例,并提出生物强化技术面临的问题和未来研究方向。
        Bioaugmentation, a new and efficient bioremediation technology, has unique advantages in the treatment of contaminated soils. In view of the current situation of pesticides-contaminated soils, this paper introduces the bioaugmentation and its application in degrading pesticides and analyzes the biotic and abiotic factors that influence bioaugmentation. Special attention is paid to research progresses and application of bioaugmentation in the remediation of the soils contaminated by organochlorinated, organophosphorus, pyrethroids and triazine pesticides. The countermeasures to the problems of bioaugmentation as well as the further research direction are put forward.
引文
[1]陈晓明,王程龙,薄瑞,等.中国农药使用现状及对策建议[J].农药科学与管理, 2016, 37(2):4–8
    [2]仲维科,郝戬,孙梅心,等.我国食品的农药污染问题[J].农药, 2000, 1(7):1–4
    [3]苏少泉.加入WTO后我国农业与除草剂发展[J].现代化农业, 2003, 291(10):4–6
    [4]谢慧,朱鲁生,谭梅英.哌虫啶在土壤中的降解动态及对土壤微生物的影响[J].土壤学报, 2016, 53(1):232–240
    [5]李顺鹏,蒋建东.农药污染土壤的微生物修复研究进展[J].土壤, 2004, 36(6):577–583
    [6]李亚平,胡艳芳,杨凡昌,等.拟除虫菊酯类农药光降解的研究进展[J].土壤, 2015, 47(1):14–19
    [7]赵玲,滕应,骆永明.中国农田土壤农药污染现状和防控对策[J].土壤, 2017, 49(3):417–427
    [8]倪妮,宋洋,王芳,等.多环芳烃污染土壤生物联合强化修复研究进展[J].土壤学报, 2016, 53(3):561–571
    [9]吕华.生物强化技术在环境修复中的应用进展[J].北方环境, 2011, 23(6):48–49
    [10] Mrozik A, Piotrowska-Seget Z. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds[J]. Microbiological Research, 2010,165(5):363–375
    [11]徐军祥,杨翔华,姚秀清,等.生物强化技术处理难降解有机污染物的研究进展[J].化工环保, 2007, 27(2):129–134
    [12] Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:A review[J].Bioresource Technology, 2000, 72(2):169–183
    [13] Singer A C, Gast C J V D, Thompson I P. Perspectives and vision for strain selection in bioaugmentation[J]. Trends in Biotechnology, 2005, 23(2):74–77
    [14] Thompson I P, Gast C J V D, Ciric L, et al.Bioaugmentation for bioremediation:the challenge of strain selection[J]. Environmental Microbiology, 2005, 7(7):909–915
    [15]孙炜,熊振湖,刘春,等.生物强化及在环境污染物生物治理中的新进展[J].天津城市建设学院学报, 2006,12(1):50–54
    [16] Semrany S, Favier L, Djelal H, et al. Bioaugmentation:Possible solution in the treatment of bio-refractory organic compounds(Bio-ROCs)[J]. Biochemical Engineering Journal, 2012, 69(51):75–86
    [17]王悦.基因工程菌生物强化性能及土著降解菌特性研究[D].石家庄:河北科技大学, 2013
    [18]文娅,赵国柱,周传斌,等.生态工程领域微生物菌剂研究进展[J].生态学报, 2011, 31(20):6287–6294
    [19]滕应,骆永明,李振高.污染土壤的微生物修复原理与技术进展[J].土壤, 2007, 39(4):497–502
    [20] Karpouzas D G, Walker A. Factors influencing the ability of Pseudomonas putida epI to degrade ethoprophos in soil[J]. Soil Biology&Biochemistry, 2000, 32(11/12):1753–1762
    [21] Hong Q, Zhang Z, Hong Y, et al. A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1[J]. International Biodeterioration&Biodegradation, 2007, 59(1):55–61
    [22]王光利,张辉,熊明华,等.降解菌Pigmentiphaga sp.strain D-2对啶虫脒污染土壤的生物修复作用[J].环境工程学报, 2014, 8(2):775–781
    [23] Fang H, Dong B, Yan H, et al. Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil[J]. Journal of Hazardous Materials, 2010, 184(1/2/3):281–289
    [24] Schroll R, Becher H H, D?rfler U, et al. Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils[J].Environmental Science&Technology, 2006, 40(10):3305–3312
    [25]石利利,林玉锁,徐亦钢,等. DLL-1菌在土壤中对甲基对硫磷农药的降解性能与影响因素研究[J].环境科学学报, 2001, 21(5):597–600
    [26] Grundmann S, Fuss R, Schmid M, et al. Application of microbial hot spots enhances pesticide degradation in soils[J]. Chemosphere, 2007, 68(3):511–517
    [27]洪源范,洪青,沈雨佳,等.甲氰菊酯降解菌Sphingomonas sp. JQL4-5对污染土壤的生物修复[J].环境科学,2007, 28(5):1121–1125
    [28] CycońM,?mijowska A, Wójcik M, et al. Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils[J]. Journal of Environmental Management, 2013, 117:7–16
    [29] Ramadan M A, Eltayeb O M, Alexander M. Inoculum size as a factor limiting success of inoculation for biodegradation[J]. Applied and Environmental Microbiology, 1990,56(5):1392–1396
    [30] Singh B K, Walker A, Wright D J. Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates:Influence of different environmental conditions. Soil Biology&Biochemistry, 2006, 38(9):2682–2693
    [31] Drufovka K, Danev?i?T, Treb?e P, et al. Microorganisms trigger chemical degradation of diazinon[J]. International Biodeterioration&Biodegradation, 2008, 62(3):293–296
    [32] CycońM, Wójcik M, Piotrowskaseget Z. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp.and Pseudomonas sp. and their use in bioremediation of contaminated soil[J]. Chemosphere, 2009, 76(4):494–501
    [33] Li X H, He J A, Li S P. Isolation of a chlorpyrifosdegrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene[J]. Research in Microbiology,2007, 158(2):143–149
    [34] Yang C, Liu N, Guo X, et al. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil[J]. FEMS Microbiology Letters, 2006, 265(1):118–125
    [35] Singh B K, Walker A, Morgan J A, et al. Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium FEMS microbiology letters. Applied and Environmental Microbiology, 2003,69(9):5198–206
    [36]李晓亮,秦智伟,候利园,等.土壤环境因素对残留农药降解的影响[J].东北农业大学学报, 2009, 40(4):132–135
    [37]侯少锋.溴氰菊酯降解菌剂的制备与应用[D].贵阳:贵州大学, 2016
    [38] Megharaj M, Ramakrishnan B, Venkateswarlu K, et al.Bioremediation approaches for organic pollutants:A critical perspective[J]. Environment International, 2011,37(8):1362–1375
    [39] Colla T S, Chen J W, Enggiap G, et al. Bioremediation assessment of diesel-biodiesel-contaminated soil using an alternative bioaugmentation strategy[J]. Environmental Science and Pollution Research, 2014, 21(4):2592–2602
    [40] Saez J M, Benimeli C S, Amoroso M J. Lindane removal by pure and mixed cultures of immobilized actinobacteria[J].Chemosphere, 2012, 89(8):982–987
    [41]潘淑颖.土壤中有机氯农药DDT原位降解研究[D].济南:山东大学, 2009
    [42] Purnomo A S, Mori T, Takagi K, et al. Bioremediation of DDT contaminated soil using brown-rot fungi[J].International Biodeterioration&Biodegradation, 2011,65(5):691–695
    [43]潘淑颖,马光辉,常勇,等.土壤中DDT的微生物修复研究[J].安徽农业科学, 2013, 41(3):1058–1060
    [44] Gao C M, Jin X, Ren J, et al. Bioaugmentation of DDTcontaminated soil by dissemination of the catabolic plasmid pDOD[J]. Journal of Environmental Sciences, 2015, 27:42–50
    [45] Kumari R, Subudhi S, Suar M, et al. Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90[J]. Applied and Environmental Microbiology, 2002, 68(12):6021–6028
    [46] Garg N, Lata P, Jit S, et al. Laboratory and field scale bioremediation of hexachlorocyclohexane(HCH)contaminated soils by means of bioaugmentation and biostimulation[J].Biodegradation, 2016, 27(2/3):179–193
    [47] Salam J A. Remediation of lindane from environment-An overview[J]. Springer Berlin Heidelberg, 2012:55(1):350–363
    [48] Abhilash P C, Srivastava S, Singh N. Comparative bioremediation potential of four rhizospheric microbial species against lindane[J]. Chemosphere, 2011, 82(1):56–63
    [49] Boltner D, Patricia G, Jesus M, et al. Rhizoremediation of lindane by root-colonizing Sphingomonas[J]. Microbial Biotechnology, 2008, 1(1):87–93
    [50] Odukkathil G, Vasudevan N. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation[J]. Journal of Environmental Management, 2016,165:72–80
    [51] Arshad M, Hussain S, Saleem M. Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa[J]. Journal of Applied Microbiology, 2008,104(2):364–370
    [52] Yang C, Liu N, Guo X, et al. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil[J]. FEMS Microbiology Letters, 2006, 265(1):118–125
    [53] Lakshmi C V, Kumar M, Khanna S. Biotransformation of chlorpyrifos and bioremediation of contaminated soil[J].International Biodeterioration&Biodegradation, 2008, 62(2):204–209
    [54] Wang L, Chi X Q, Zhang J J, et al. Bioaugmentation of a methyl parathion contaminated soil with Pseudomonas sp.strain WBC-3[J]. International Biodeterioration&Biodegradation, 2014, 87(1):116–121
    [55]赵倩,陈双林,叶雪均,等.竹林土壤中甲基对硫磷降解菌的降解效果及其与土壤物理特性的关系[J].环境工程学报, 2009, 3(7):1325-1328
    [56] Yang L, Zhao Y, Zhang B, et al. Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium[J]. FEMS Microbiology Letters, 2005, 251(1):67–73
    [57] Oudou H C, Hansen H C B. Sorption of lambda-cyhalothrin,cypermethrin, deltamethrin and fenvalerate to quartz,corundum, kaolinite and montmorillonite[J]. Chemosphere,2002, 49(10):1285–1294
    [58] Akbar S, Sultan S, Kertesz M. Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics[J]. Current Microbiology, 2015, 70(1):75–84
    [59] Akbar S, Sultan S, Kertesz M. Bacterial community analysis of cypermethrin enrichment cultures and bioremediation of cypermethrin contaminated soils[J].Journal of Basic Microbiology, 2015, 55(7):819-829
    [60] Chen S H, Zhang C, Deng Y, et al. Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils[J]. Journal of Agricultural and Food Chemistry, 2014,62(10):2147-2157
    [61] Hong Y F, Zhou J, Hong Q, et al. Characterization of a fenpropathrin-degrading strain and construction of a genetically engineered microorganism for simultaneous degradation of methyl parathion and fenpropathrin[J].Journal of Environmental Management, 2010, 91(11):2295-2300
    [62] CycońM,?mijowska A, Piotrowska-Seget Z.Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens[J]. International Journal of Environmental Science and Technology, 2014, 11(5):1305-1316
    [63] Chen S H, Yang L, Hu M, et al. Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils[J]. Applied Microbiology and Biotechnology, 2011, 90(2):755-767
    [64] Rhodes C J. Applications of bioremediation and phytoremediation[J]. Science Progress, 2013, 96(4):417-427
    [65] Chen S H, Luo J, Hu M, et al. Microbial detoxification of bifenthrin by a novel yeast and its potential for contaminated soils treatment[J]. PLoS One, 2012, 7(2):e30862
    [66] Morgante V, Lopezlopez A, Flores C, et al. Bioaugmentation with Pseudomonas sp. strain MHP41 promotes simazine attenuation and bacterial community changes in agricultural soils[J]. FEMS Microbiology Ecology, 2010,71(1):114-126
    [67] Wan R, Yang Y, Sun W, et al. Simazine biodegradation and community structures of ammonia-oxidizing microorganisms in bioaugmented soil:Impact of ammonia and nitrate nitrogen sources[J]. Environmental Science and Pollution Research, 2014, 21(4):3175-3181
    [68] Guo Q W, Wan R, Xie S G. Simazine degradation in bioaugmented soil:Urea impact and response of ammonia-oxidizing bacteria and other soil bacterial communities[J]. Environmental Science and Pollution Research, 2014, 21(1):337-343
    [69] Morillo E, Villaverde J. Advanced technologies for the remediation of pesticide-contaminated soils[J]. Science of the Total Environment, 2017, 586:576-597
    [70] Lima D, Viana P, Andre S, et al. Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms:The effectiveness of bioaugmentation and biostimulation approaches[J]. Chemosphere, 2009, 74(2):187-192
    [71] Wang Q F, Xie S G, Hu R. Bioaugmentation with Arthrobacter sp. strain DAT1 for remediation of heavily atrazine-contaminated soil[J]. International Biodeterioration&Biodegradation, 2013, 77:63-67
    [72] Silva V P, Matilde M S, Carla M, et al. Evaluation of Arthrobacter aurescens strain TC1 as bioaugmentation bacterium in soils contaminated with the herbicidal substance terbuthylazine[J]. PLoS One, 2015, 10(12):e0144978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700