用户名: 密码: 验证码:
寒温带森林根际土壤微生物量碳氮含量生长季内动态变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamics of Soil Microbial Biomass Carbon and Nitrogen in the Soil of Rhizosphere during Growing Season in the Cold Temperate Forests
  • 作者:丁令智 ; 满秀玲 ; 肖瑞晗 ; 蔡体久
  • 英文作者:Ding Lingzhi;Man Xiuling;Xiao Ruihan;Cai Tijiu;Key Laboratory of Sustainable Forest Ecosystem Management,Ministry of Education School of Forestry,Northeast Forestry University;
  • 关键词:大兴安岭 ; 土壤微生物量碳氮 ; 根际土壤 ; 根际效应 ; 动态变化
  • 英文关键词:Daxing'anling Mountains;;soil microbial biomass carbon and nitrogen;;rhizosphere soil;;rhizosphere effect;;dynamic change
  • 中文刊名:林业科学
  • 英文刊名:Scientia Silvae Sinicae
  • 机构:东北林业大学林学院森林生态系统可持续经营教育部重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:林业科学
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金项目(31770488)
  • 语种:中文;
  • 页:181-189
  • 页数:9
  • CN:11-1908/S
  • ISSN:1001-7488
  • 分类号:S714.3
摘要
【目的】研究寒温带森林根际土壤微生物量碳氮含量的动态变化,为揭示森林土壤碳氮养分利用机制和碳氮循环提供参考,为研究区森林保护与合理经营提供科学依据。【方法】以我国寒温带针阔混交林为研究对象,选择主要组成树种樟子松、兴安落叶松、白桦和山杨,采用抖落法采集根际和非根际土壤样品,对土壤微生物量碳氮含量动态特征进行研究,探讨不同树种根际土壤微生物量碳氮的富集程度、差异性和生长季变化以及其对土壤营养库的贡献率。【结果】不同树种根际土壤微生物量碳氮含量月际变化差异显著,根际土壤微生物量碳含量波动范围为114.14~451.05 mg·kg~(-1),氮含量波动范围为40.38~185.00 mg·kg~(-1)。根际土壤微生物量碳富集率依次为樟子松(87.99%)>白桦(78.22%)>兴安落叶松(73.14%)>山杨(56.96%),微生物量氮富集率依次为山杨(81.50%)>白桦(77.63%)>樟子松(76.42%)>兴安落叶松(51.40%)。土壤微生物量碳氮比为1.42~5.24,樟子松、兴安落叶松、白桦、山杨根际和非根际土壤微生物量碳氮比生长季变幅分别为1.42~5.24、1.57~3.79、1.67~4.55、1.55~2.59和1.79~3.53,其均值分别为2.64、2.63、2.81、2.11和2.36。根际微生物量碳对土壤有机碳库的贡献率为0.83%~0.95%,微生物量氮对土壤有机氮库的贡献率为3.63%~5.08%。【结论】寒温带针阔混交林主要树种生长季根际土壤微生物量碳氮含量均显著高于非根际,根际效应显著;在生长季末期,针叶树种根际效应相比阔叶树种更为强烈;针叶树种根际土壤微生物量对土壤结构和功能的影响高于阔叶树种。
        【Objective】 The rhizosphere plays an vital role for microbial-driven carbon and nitrogen sequestration and nutrient cycling of terrestrial ecosystems. Studies on dynamic of microbial biomass in rhizosphere soil can help us understand the mechanism of utilization and cycle of carbon and nitrogen, and also provide a scientific basis for forest protection and rational management in the study area.【Method】 Taking the coniferous and broad-leaved mixed forest as the research object, the rhizosphere and non-rhizosphere soil samples were collected using shaking off method in the forests dominated by the main native tree species in the cold temperate forests of China(Pinus sylvestris var. mongolica, Larix gmelinii, Betula platyphylla and Populus davidiana). The enrichment, the differences and the variations during growing season of microbial biomass carbon and nitrogen in different rhizosphere soils were analyzed to explore the characteristics of soil microbial biomass and its contribution to soil nutrient pool.【Result】 The changes of microbial biomass carbon and nitrogen in the rhizosphere soil of the different species were significant among different months. The microbial biomass carbon content in the rhizosphere soil ranged from 114.14 to 451.05 mg·kg~(-1),the microbial biomass nitrogen content in the rhizosphere soil ranged from 40.38 to 185.00 mg·kg~(-1). The enrichment rate of microbial biomass carbon in rhizosphere soil was in the order of Pinus sylvestris var. mongolica(87.99%)>Betula platyphylla(78.22%)>Larix gmelinii(73.14%)>Populus davidiana(56.96%). The rank of microbial biomass nitrogen enrichment rate was Populus davidiana(81.50%)> Betula platyphylla(77.63%)>Pinus sylvestris var. mongolica(76.42%)>Larix gmelinii(51.40%). The range of soil microbial biomass carbon-nitrogen ratio was 1.42 to 5.24. The ranges of microbial biomass carbon and nitrogen ratios in the rhizosphere and non-rhizosphere of Pinus sylvestris var. mongolica, Larix gmelinii, Betula platyphylla, and Populus davidiana were 1.42-5.24, 1.57-3.79, 1.67-4.55, 1.55-2.59 and 1.79-3.53, respectively. The average values of soil microbial biomass carbon-nitrogen ratio were 2.64, 2.63, 2.81, 2.11 and 2.36, respectively. The contributions of microbial biomass carbon to the rhizosphere soil organic carbon pool ranged from 0.83% to 0.95%.The contributions of microbial biomass nitrogen to the organic nitrogen pool of rhizosphere soil were between 3.63% and 5.08%.【Conclusion】 The content of microbial biomass carbon and nitrogen in the rhizosphere soil of the main cold-temperate mixed forests were significantly higher than those in the non-rhizosphere during the growing season, which indicated that the rhizosphere effect wassignificant. At the end of the growing season, the rhizosphere effects of the coniferous trees were stronger than those of the broad-leaved trees. The conifer species have the greater impact on soil microbial structure and function than the broad-leaved trees.
引文
曹伟,李露,赵鹏志,等.2016.坡地黑土团聚体氮库及其分布.东北林业大学学报,44(5):63-66.(Cao W,Li L,Zhao P Z,et al.2016.Organic nitrogen pool and its distribution of aggregates in sloping black soils.Journal of Northeast Forestry University,44(5):63-66.[in Chinese])
    陈海滨,马秀丽,陈志彪,等.2016.南方稀土矿区水土保持植物根际土壤碳氮及pH特征.土壤学报,53(5):1334-1341.(Chen H B,Ma X L,Chen Z B,et al.2016.Carbon,nitrogen and pH in rhizosphere of soil-water conserving plants in rare earth mining area in south China.Acta Pedologica Sinica,53(5):1334-1341.[in Chinese])
    陈立新.2005.土壤实验实习教程.哈尔滨:东北林业大学出版社.(Chen L X.2005.Soil experiment practice course.Harbin:Northeast Forestry University Press.[in Chinese])
    董敏慧,张良成,文丽,等.2017.松树-樟树混交林、纯林土壤微生物量碳、氮及多样性特征研究.中南林业科技大学学报,37(11):146-153.(Dong M H,Zhang L C,Wen L,et al.2017.Soil microbial biomass C,N and diversity characteristics in pure and mixed forest of Pinus and Cinnamomun.Journal of Central South University of Forestry & Technology,37(11):146-153.[in Chinese])
    段北星,满秀玲,宋浩,等.2018.大兴安岭北部不同类型兴安落叶松林土壤呼吸及其组分特征.北京林业大学学报,40(2):40-50.(Duan B X,Man X L,Song H,et al.2018.Soil respiration and its component characteristics under different types of Larix gmelinii forests in the north of Daxing’an Mountains of northeastern China.Journal of Beijing Forestry University,40(2):40-50.[in Chinese])
    何云,周义贵,李贤伟,等.2013.台湾桤木林草复合模式土壤微生物量碳季节动态.林业科学,49(7):26-33.(He Y,Zhou Y G,Li X W,et al.2013.Seasonal dynamics of soil microbial biomass carbon in Alnus formosana forest-grass compound models.Scientia Silvae Sinicae,49(7):26-33.[in Chinese])
    李红运,辛颖,赵雨森.2016.火烧迹地不同恢复方式土壤有机碳分布特征.应用生态学报,27(9):2747-2753.(Li H Y,Xin Y,Zhao Y S.2016.Distribution characteristics of soil organic carbon of burned area under different restorations.Chinese Journal of Applied Ecology,27(9):2747-2753.[in Chinese])
    李胜蓝,方晰,项文化,等.2014.湘中丘陵区4种森林类型土壤微生物生物量碳氮含量.林业科学,50(5):8-16.(Li S L,Fang X,Xiang W H,et al.2014.Soil microbial biomass carbon and nitrogen concentrations in four subtropical forests in hilly region of central Hunan Province,China.Scientia Silvae Sinicae,50(5):8-16.[in Chinese])
    林尤伟,金光泽.2016.冻融期去根处理对小兴安岭6种林型土壤微生物量的影响.生态学报,36(19):6159-6169.(Lin Y W,Jin G Z.2016.Effects of root resectioning on soil microbial biomass in six forest types in the Xiaoxing’an Mountains during freezing-thawing cycles.Acta Ecologica Sinica,36(19):6159-6169.[in Chinese])
    刘顺,盛可银,刘喜帅,等.2017.陈山红心杉根际土壤有机碳、氮含量及根际效应.生态学杂志,36(7):1957-1964.(Liu S,Sheng K Y,Liu X S,et al.2017.Contents of soil organic carbon and nitrogen forms in rhizosphere soil of Cunninghamia lanceolata and the rhizopshere effect.Chinese Journal of Ecology,36(7):1957-1964.[in Chinese])
    庞圣江,杨保国,刘士玲,等.2018.桂西北喀斯特山区4种森林表土土壤有机碳含量及其养分分布特征.中南林业科技大学学报,38(4):60-64,71.(Pang S J,Yang B G,Liu S L,et al.2018.The distribution of organic carbon and soil nutrients under four forest types in karst mountain areas of northwest Guangxi,China.Journal of Central South University of Forestry & Technology,38(4):60-64,71.[in Chinese])
    漆良华,张旭东,周金星,等.2009.湘西北小流域不同植被恢复区土壤微生物数量、生物量碳氮及其分形特征.林业科学,45(8):14-20.(Qi L H,Zhang X D,Zhou J X,et al.2009.Soil microbe quantites,microbial carbon and nitrogen and fractal characteristics under different vegetation restoration patterns in watershed,northwest Hunan.Scientia Silvae Sinicae,45(8):14-20.[in Chinese])
    王宝荣,杨佳佳,安韶山,等.2018.黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征的影响.应用生态学报,29(1):247-259.(Wang B R,Yang J J,An S S,et al.2018.Effects of vegetation and topography features on ecological stoichiometry of soil and soil microbial biomass in the hilly-gully region of the Loess Plateau,China.Chinese Journal of Applied Ecology,29(1):247-259.[in Chinese])
    王风芹,田丽青,宋安东,等.2015.华北刺槐林与自然恢复植被土壤微生物量碳、氮含量四季动态.林业科学,51(3):16-24.(Wang F Q,Tian L Q,Song A D,et al.2015.Seasonal dynamics of microbial biomass carbon and nitrogen in soil of Robinia pseudoacacia forests and near-naturally restored vegetation in northern China.Scientia Silvae Sinicae,51(3):16-24.[in Chinese])
    王宁,杨雪,李世兰,等.2016.不同海拔红松混交林土壤微生物量碳、氮的生长季动态.林业科学,52(1):150-158.(Wang N,Yang X,Li S L,et al.2016.Seasonal dynamics of soil microbial biomass carbon-nitrogen in the Korean pine mixed forests along elevation gradient.Scientia Silvae Sinicae,52(1):150-158.[in Chinese])
    许淼平,任成杰,张伟,等.2018.土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制.应用生态学报,29(7):2445-2454.(Xu M P,Ren C J,Zhang W,et al.2018.Responses mechanism of C:N:P stoichiometry of soil microbial biomass and soil enzymes to climate change.Chinese Journal of Applied Ecology,29(7):2445-2454.[in Chinese])
    杨成德,龙瑞军,陈秀蓉,等.2007.东祁连山高寒草甸土壤微生物量及其与土壤物理因子相关性特征.草业学报,16(4):62-68.(Yang C D,Long R J,Chen X R,et al.2007.Study on microbial biomass and its correlation with the soil physical properties under the alpine grassland of the east of Qilian Mountains.Acta Prataculturae Sinica,16(4):62-68.[in Chinese])
    Angst G,K?gel-Knabner I,Kirfel K,et al.2016.Spatial distribution and chemical composition of soil organic matter fractions in rhizosphere and non-rhizosphere soil under European beech(Fagus sylvatica L.).Geoderma,264(part A):179-187.
    Balakrishnan B,Sahu B K,Lourduraj A V,et al.2017.Assessment of heavy metal concentrations and associated resistant bacterial communities in bulk and rhizosphere soil of Avicennia marina,of Pichavaram mangrove,India.Environmental Earth Sciences,76:58.
    Bargali K,Manral V,Padalia K,et al.2018.Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils,India.Catena,171:125-135.
    Berg G,Smalla K.2010.Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere.Fems Microbiology Ecology,68(1):1-13.
    Bijayalaxmi D N,Yadava P S.2006.Seasonal dynamics in soil microbial biomass C,N and P in a mixed-oak forest ecosystem of Manipur,North-east India.Applied Soil Ecology,31(3):220-227.
    Bird J A,Herman D J,Firestone M K.2011.Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil.Soil Biology & Biochemistry,43(4):718-725.
    Carter M R,Gregorich E G,Angers D A,et al.1999.Interpretation of microbial biomass measurements for soil quality assessment in humid temperate regions.Canadian Journal of Soil Science,79(4):507-520.
    Chen C R,Xu Z H,Zhang S L,et al.2005.Soluble organic nitrogen pools in forest soils of subtropical Australia.Plant and Soil,277(1/2):285-297.
    Coleman D C,Oades J M,Uehara G.1989.Dynamics of soil organic matter in tropical ecosystems.Soil Science,151(2):184.
    Cui Y,Fang L,Guo X,et al.2018.Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau,China.Soil Biology & Biochemistry,116:11-21.
    Diazravina M,Acea M J,Carballas T.1995.Seasonal changes in microbial biomass and nutrient flush in forest soils..Biology and Fertility of Soils,19(2/3):220-226.
    Edwards K A,Mcculloch J,Kershaw G P,et al.2006.Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring.Soil Biology & Biochemistry,38(9):2843-2851.
    Fraser T D,Lynch D H,Gaiero J,et al.2017.Quantification of bacterial non-specific acid(phoC),and alkaline(phoD)phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields.Applied Soil Ecology,111:48-56.
    Freppaz M,Said-Pullicino D,Filippa G,et al.2014.Winter-spring transition induces changes in nutrients and microbial biomass in mid-alpine forest soils.Soil Biology & Biochemistry,78:54-57.
    Frey S D,Drijber R,Smith H,et al.2008.Microbial biomass,functional capacity,and community structure after 12 years of soil warming.Soil Biology and Biochemistry,40(11):2904-2907.
    Gartner T B,Treseder K K,Malcolm G M,et al.2012.Extracellular enzyme activity in the mycorrhizospheres of a boreal fire chrono sequence.Pedobiologia-International Journal of Soil Biology,55(2):121-127.
    Hartmann A,Rothballer M,Schmid M.2008.Lorenz Hiltner,a pioneer in rhizosphere microbial ecology and soil bacteriology research.Plant & Soil,312(1/2):7-14.
    Harris D,Voroney RP,Paul EA.2007.Measurement of microbial biomass N:C by chloroform fumigation-incubation.Canadian Journal of Soil Science,77(4):507-514.
    Jangid K,Williams M A,Franzluebbers A J,et al.2011.Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties.Soil Biology and Biochemistry,43(10):2184-2193.
    Kim S,Li G,Han S H,et al.2018.Thinning affects microbial biomass without changing enzyme activity in the soil of Pinus densiflora,Sieb.et Zucc.forests after 7 years.Annals of Forest Science,75:13.
    Li H,Yang X,Weng B,et al.2016.The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil.Soil Biology & Biochemistry,100:59-65.
    Moreno J L,Torres I F,García C,et al.2019.Land use shapes the resistance of the soil microbial community and the C cycling response to drought in a semi-arid area.Science of the Total Environment,648:1018-1030.
    Mukhopadhyay S,Masto R E,Cerdà A,et al.2016.Rhizosphere soil indicators for carbon sequestration in a reclaimed coal mine spoil.Catena,141:100-108.
    Paul E A,Clark F E.1996.Soil microbiology and biochemistry.San Diego:Academic Press.
    Phillips R P,Fahey T J.2008.The influence of soil fertility on rhizosphere effects in northern hardwood forest soils.Soilence Society of America Journal,72(2):453-461.
    Qiu S J,Ju X T,Ingwersen J,et al.2010.Changes in soil carbon and nitrogen pools after shifting from conventional cereal to greenhouse vegetable production.Soil & Tillage Research,107(2):80-87.
    Schindlbacher A,Rodler A,Kuffner M,et al.2011.Experimental warming effects on the microbial community of a temperate mountain forest soil.Soil Biology & Biochemistry,43(7):1417-1425.
    Simpson A C,Zabowski D,Rochefort R M,et al.2019.Increased microbial uptake and plant nitrogen availability in response to simulated nitrogen deposition in alpine meadows.Geoderma,336:68-80.
    Stevenson B A,Hunter D W F,Rhodes P L.2014.Temporal and seasonal change in microbial community structure of an undisturbed,disturbed,and carbon-amended pasture soil.Soil Biology & Biochemistry,75:175-185.
    Vives-Peris V,Molina L,Segura A,et al.2018.Root exudates from citrus plants subjected to abiotic stress conditions have a positive effect on rhizobacteria.Journal of Plant Physiology,228:208-217.
    Yokobe T,Hyodo F,Tokuchi N.2018.Seasonal effects on microbial community structure and nitrogen dynamics in temperate forest soil.Forests,9(3):153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700