用户名: 密码: 验证码:
三峡库区消落带立柳(Salix matsudana)生长及营养元素分配特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth and nutrient distribution characteristics of Salix matsudana in the hydro-fluctuation belt of the Three Gorges Reservoir
  • 作者:吴科君 ; 马文超 ; 李瑞 ; 陈红纯 ; 黄超 ; 何欣芮 ; 魏虹
  • 英文作者:WU Kejun;MA Wenchao;LI Rui;CHEN Hongchun;HUANG Chao;HE Xinrui;WEI Hong;Key Laboratory of Eco-environments in Three Gorges Reservoir Region(Ministry of Education),Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region,School of Life Sciences,Southwest University;Panzhihua Tourism Bureau;
  • 关键词:立柳 ; 冬季水淹 ; 营养元素 ; 三峡库区 ; 消落带
  • 英文关键词:Salix matsudana;;off-season flooding;;nutrients;;Three Gorges Reservoir;;hydro-fluctuation belt
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:三峡库区生态环境教育部重点实验室重庆市三峡库区植物生态与资源重点实验室西南大学生命科学学院;攀枝花市旅游局;
  • 出版日期:2019-07-23
  • 出版单位:生态学报
  • 年:2019
  • 期:14
  • 基金:国家十三五重点研发计划(2017YFC0505305);; 国家国际科技合作专项(2015DFA90900);; 三峡后续工作库区生态与生物多样性保护专项项目(5000002013BB5200002);; 中央财政林业科技推广示范资金项目(20170183)
  • 语种:中文;
  • 页:298-306
  • 页数:9
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:Q948
摘要
立柳因良好的耐淹性常被用于三峡库区消落带的植被重建。为探讨立柳如何通过营养元素的积累和分配来适应库区消落带冬季水淹,于2015年5月对三峡库区消落带植被修复示范基地内3个采样带(175 m,170 m和165 m)中立柳的生长状况以及叶、枝条和根的营养元素含量特征进行分析。结果表明:(1)经过3个水淹周期后,随着水淹强度的增加,立柳的株高、基径和冠幅均受到一定的抑制;但与种植初期相比,3个采样带中立柳的株高、基径和冠幅均显著增加,且生长状态良好。(2)立柳各器官中营养元素含量均处于正常水平,但水淹抑制了根中N、P的积累,促进了Fe和Mn的积累;水淹显著降低了海拔165 m处立柳叶和枝条中Ca含量、枝条和根中Cu和Zn的含量。(3)水淹胁迫导致N、P、K、Mg元素更多地在叶中积累,而Cu和Zn在枝条中大量积累,这有利于退水后植株的光合合成以及恢复生长;Fe、Mn元素在根中大量积累,其对根系正常生理可能造成的干扰值得进一步关注。研究表明,在不同的水淹胁迫梯度下,立柳可针对性地调整其营养元素积累和分配方式,保持植株正常的生长状态,对维护三峡库区消落带生态系统的正常结构和功能具有重要作用。但在库区消落带植被恢复和重建工作中,需加强170 m以下海拔区域立柳生长的监测和研究。
        After the completion of the Three Gorges Dam, a hydro-fluctuation belt with a range of 30 m and an area of about 350 km~2 was formed. The unique anthropogenic hydrological regime of the Three Gorges Dam has had significant negative impacts on the reservoir′s ecosystem. A large number of native flooding-intolerant plants living within the belt have gradually died due to off-season flooding, which negatively affected the ecosystem structure and function of the hydro-fluctuation belt. Therefore, vegetation reconstruction and restoration in the Three Gorges Reservoir(TGR) is urgent; previous studies have shown that Salix matsudana has been used for vegetation reconstruction due to its flood resistance abilities. The nutritional accumulation and distribution of plants in a certain degree can reflect eco-physiological processes, and can serve as a crucial indicator of the structure and function of the local ecosystem. In order to explore how S. matsudana adapts to the winter flooding in the hydro-fluctuation belt of the TGR through the accumulation and distribution of nutrients, the growth status and the nutrient content in leaves, branches, and roots of S. matsudana in three sampling belts(at altitudes of 175 m, 170 m, and 165 m) of the vegetation remediation demonstration base of the TGR were measured in May 2015. The results showed that:(1) After three flooding cycles, the plant height, base diameter, and crown width of S. matsudana were inhibited by the increase of flooding intensity; however, compared with the initial stage of planting, the plant height, base diameter and crown width of S. matsudana in the three sampling belts were significantly higher, and the growth status was good as well.(2) The nutrient content in all organs of S. matsudana were maintained at normal levels, but flooding reduced the content of N and P in roots and increased the Fe and Mn content. In addition, winter flooding resulted in a significant decrease in the content of Ca in S. matsudana leaves and branches and the content of Cu and Zn in the branches and roots at an altitude of 165 m.(3) Under flooding stress, N, P, K, and Mg elements accumulated more in the leaves, while Cu and Zn accumulated in the branches, which is beneficial for photosynthetic rates and recovering growth of plants after water withdrawal. While winter flooding leads to higher accumulation of Fe and Mn elements in the roots, this disturbance to normal root physiology deserves further attention. Studies have shown that under different flood stress conditions, S. matsudana can adjust the accumulation and distribution of nutrients in a targeted manner to ensure a normal growth state. However, in this study of vegetation restoration and reconstruction in the water-fluctuating zone of the reservoir, we found that it is necessary to strengthen the monitoring and research of sustainable growth of S. matsudana at altitudes below 170 m.
引文
[1] 王朝英,李昌晓,张晔.水淹-干旱胁迫对南川柳苗木生长及生理特性的影响.林业科学,2013,49(12):164- 170.
    [2] 王建超,朱波,汪涛.三峡库区典型消落带淹水后草本植被的自然恢复特征.长江流域资源与环境,2011,20(5):603- 610.
    [3] 吕明权,吴胜军,陈春娣,姜毅,温兆飞,陈吉龙,王雨,王小晓,黄平.三峡消落带生态系统研究文献计量分析.生态学报,2015,35(11):3504- 3518.
    [4] 李昌晓,钟章成,陶建平.不同水分条件下池杉幼苗根系的苹果酸、莽草酸含量及生物量.林业科学,2008,44(10):1- 7.
    [5] 樊大勇,熊高明,张爱英,刘曦,谢宗强,李兆佳.三峡库区水位调度对消落带生态修复中物种筛选实践的影响.植物生态学报,2015,39(4):416- 432.
    [6] 杨文航,秦红,任庆水,贺燕燕,李晓雪,李昌晓.三峡库区消落带重建植被下土壤微生物生物量碳氮含量特征.生态学报,2017,37(23):7947- 7955.
    [7] 陈芳清,郭成圆,王传华,许文年,樊大勇,谢宗强.水淹对秋华柳幼苗生理生态特征的影响.应用生态学报,2008,19(6):1229- 1233.
    [8] 刘维暐,杨帆,王杰,王勇.三峡水库干流和库湾消落区植被物种动态分布研究.植物科学学报,2011,29(3):296- 306.
    [9] 唐罗忠,徐锡增,方升佐.土壤涝渍对杨树和柳树苗期生长及生理性状影响的研究.应用生态学报,1998,9(5):471- 474.
    [10] 吴麟,张伟伟,葛晓敏,唐罗忠.植物对淹水胁迫的响应机制研究进展.世界林业研究,2012,25(6):27- 33.
    [11] 任庆水,马朋,李昌晓,杨予静,马骏.三峡库区消落带落羽杉(Taxodium distichum)与柳树(Salix matsudana)人工植被对土壤营养元素含量的影响.生态学报,2016,36(20):6431- 6444.
    [12] 钟彦,刘正学,秦洪文,熊瑛,向丽霞,刘锐,杨艳,马睿.冬季淹水对柳树生长及恢复生长的影响.南方农业学报,2013,44(2):275- 279.
    [13] 张晔.水淹与干旱胁迫对三峡库区消落带几种适生树种的生理生态影响[D].重庆:西南大学,2012.
    [14] 金茜,王瑞,周向睿,周志宇,卢鑫,赵萍,李金辉,周媛媛.水淹胁迫对紫穗槐生长及营养元素积累的影响.草业科学,2013,30(6):904- 909.
    [15] Du Y,Pan G,Li L,Hu Z,Wang X.Leaf N/P ratio and nutrient reuse between dominant species and stands:predicting phosphorus deficiencies in Karst ecosystems,southwestern China.Environmental Earth Sciences,2011,64(2):299- 309.
    [16] 张信宝,王克林.西南碳酸盐岩石质山地土壤-植被系统中矿质养分不足问题的思考.地球与环境,2009,37(4):337- 341.
    [17] 韩文娇.水淹与干旱胁迫对牛鞭草和狗牙根光合及营养元素含量的影响[D].重庆:西南大学,2016.
    [18] 李强,宋力,王书敏,谢云成,王文林.水位变化对三峡库区消落带狗牙根种群营养特征的影响.生态科学,2015,34(4):15- 20.
    [19] 马文超,刘媛,周翠,王婷,魏虹.水位变化对三峡库区消落带落羽杉营养特征的影响.生态学报,2017,37(4):1128- 1136.
    [20] Li W,Cao T,Ni L,Zhu G,Zhang X,Fu H,Song X,Xie P.Size-dependent C,N and P stoichiometry of three submersed macrophytes along water depth gradients.Environmental Earth Sciences,2015,74(5):3733- 3738.
    [21] Li W,Cao T,Ni L,Zhang X,Zhu G,Xie P.Effects of water depth on carbon,nitrogen and phosphorus stoichiometry of five submersed macrophytes in an in situ experiment.Ecological Engineering,2013,61(A):358- 365.
    [22] 陆景陵.植物营养学(上册)(第二版).北京:中国农业大学出版社,2003:276.
    [23] 李波,袁兴中,杜春兰,肖红艳.池杉在三峡水库消落带生态修复中的适应性.环境科学研究,2015,28(10):1578- 1585.
    [24] Li B,Du C,Yuan X,Willison J H M,Xiao H.Suitability of Taxodium distichum for Afforesting the Littoral Zone of the Three Gorges Reservoir.PLoS One,2016,11(1):e0146664.
    [25] Voesenek L A C J,Sasidharan R,Visser E J W,Bailey-Serres J.Flooding stress signaling through perturbations in oxygen,ethylene,nitric oxide and light.New Phytologist,2016,209(1):39- 43.
    [26] Bailey-Serres J,Colmer T D.Plant tolerance of flooding stress-recent advances.Plant Cell and Environment,2014,37(10SI):2211- 2215.
    [27] Brooks A,Woo K C,Wong S C.Effects of phosphorus-nutrition on the response of photosynthesis to CO2 AND O2,activation of pibulose bisphosphate carboxlase and amounts of ribulose bisphosphate and 3-phosphoglycreate in spinach leaves.Photosynthesis Research,1988,15(2):133- 141.
    [28] Domingues T F,Meir P,Feldpausch T R,Saiz G,Veenendaal E M,Schrodt F,Bird M,Djagbletey G,Hien F,Compaore H,Diallo A,Grace J,Lloyd J.Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands.Plant Cell and Environment,2010,33(6):959- 980.
    [29] Pottosin I I,Schonknecht G.Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes.Journal of Membrane Biology,1996,152(3):223- 233.
    [30] Lauer M J,Pallardy S G,Blevins D G,Randall D D.Whole leaf carbon exchange characteristics of phosphate deicient soybeans(Glycine-Max L).Plant Physiology,1989,91(3):848- 854.
    [31] Hashimoto K,Kudla J.Calcium decoding mechanisms in plants.Biochimie,2011,93(12):2054- 2059.
    [32] Laing W,Greer D,Sun O,Beets P,Lowe A,Payn T.Physiological impacts of Mg deficiency in Pinus radiata:growth and photosynthesis.New Phytologist,2000,146(1):47- 57.
    [33] 潘瑞炽.植物生理学(第五版).北京:高等教育出版社,2004:321.
    [34] Smethurst C F,Garnett T,Shabala S.Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery.Plant and Soil,2005,270(1):31- 45.
    [35] Liu Z,Cheng R,Xiao W,Guo Q,Wang N.Effect of Off-Season Flooding on Growth,Photosynthesis,Carbohydrate Partitioning,and Nutrient Uptake in Distylium chinense.PLoS One,2014,9(9):e1076369.
    [36] 刘玉芳,陈双林,李迎春,陈珊,郭子武,杨清平.长期淹水对河竹鞭根养分化学计量特征的影响.西北植物学报,2015,35(2):350- 355.
    [37] Pezeshki S R.Wetland plant responses to soil flooding.Environmental and Experimental Botany,2001,46(3):299- 312.
    [38] Pezeshki S R.De Laune R D.Soil oxidation-reduction in wetlands and its impact on plant functioning.Biology,2012,1(3):196- 221.
    [39] Cao T,Ni L,Xie P,Xu J,Zhang M.Effects of moderate ammonium enrichment on three submersed macrophytes under contrasting light availability.Freshwater Biology,2011,56(8):1620- 1629.
    [40] Madsen T V,Cedergreen N.Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream.Freshwater Biology,2002,47(2):283- 291.
    [41] 马文超.三峡库区消落带落羽杉和立柳营养元素与非结构性碳水化合物含量特征研究[D].重庆:西南大学,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700