用户名: 密码: 验证码:
散射管气体鼓泡塔流场分布特性及优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flow distribution characteristics and optimization of a gas bubble column in a scattering tube
  • 作者:何宇康 ; 王春波
  • 英文作者:HE Yukang;WANG Chunbo;Department of Energy Power and Mechanical Engineering,North China Electric Power University;
  • 关键词:散射管 ; 鼓泡塔 ; 气含率 ; 液相速度 ; 气泡直径
  • 英文关键词:scattering tube;;bubble tower;;gas holdup;;liquid velocity;;air bubble diameter
  • 中文刊名:洁净煤技术
  • 英文刊名:Clean Coal Technology
  • 机构:华北电力大学能源动力与机械工程学院;
  • 出版日期:2019-07-15
  • 出版单位:洁净煤技术
  • 年:2019
  • 期:04
  • 基金:国家重点研发计划资助项目(2016YFB0600704)
  • 语种:中文;
  • 页:127-131
  • 页数:5
  • CN:11-3676/TD
  • ISSN:1006-6772
  • 分类号:TQ053.5
摘要
鼓泡塔因其较好的气-液传质性能具有高污染物脱除效率,被广泛应用于生物化工和烟气处理等领域。鼓泡塔散射管气体分布器的几何尺寸和结构是影响相间传质效率的关键因素,优化塔内流场对于提高鼓泡塔内气-液两相间的传质效率至关重要。采用Fluent软件对有内构件散射管横向进气口式的鼓泡塔进行模拟研究,基于双流体方法和群体平衡模型(PBM)模型对鼓泡塔三维建模,采用一阶迎风差分格式离散,使用Phase Coupled Simple算法进行压力速度耦合。研究了散射管所在圆环直径d分别为0. 375D、0. 5D、0. 625D、0. 75D时(D为鼓泡塔直径),散射管进气口的布置对整体和局部气含率、液速和气泡尺寸等的影响。研究结果表明,随着散射管分布环直径的增大,整体气含率先增大后减少,平均气泡直径先减小后增大;当散射管所在圆环直径d=0. 5D时,鼓泡塔整体气含率和液相循环速度最大,平均气泡直径最小,鼓泡塔流场综合性能最好。
        Bubble tower is widely used in bio-chemical industry and flue gas treatment due to the high efficiency of pollutant removal of its better gas-liquid mass transfer performance.The geometry size and structure of the gas distributor in the scattering tube are the key factors that affect the mass transfer efficiency between the two phases of gas and liquid.It is very important to optimize the flow field in the column for improving the mass transfer efficiency between gas and liquid in the bubble column.Fluent software was adopted to simulate the transverse inlet of scattering tube with internal components of bubbling tower.The three-dimensional model of bubbling tower was carried out based on the two-fluid method and population balance( PBM) model.The first-order upwind difference scheme was used to discretize the bubble column,and the Phase Coupled Simple algorithm was used for pressure and velocity coupling.The influences of the air inlet layout on the overall and local gas holdup,liquid velocity,bubble size and other factors were studied when the diameter of the ring where the scattering tube was located was equal to 0.375 D,0.5 D,0.625 D and 0.75 D,respectively.The results show that with the increase of the diameter of distribution ring,the overall gas holdup increases first and then decreases,and the average bubble diameter decreases first and then increases.When the diameter of the ring where the scattering tube is located is d = 0.5 D,the bubble tower has the largest overall gas holdup and liquid circulation velocity,the smallest average bubble diameter,and the best comprehensive performance of flow field in the bubble tower.
引文
[1]李光,杨晓钢,戴干策.CFD研究短导流筒对鼓泡塔流体动力学的影响[J].华东理工大学学报(自然科学版),2010,36(2):173-179.LI Guang,YANG Xiaogang,DAI Gance. Influence of short-draft tube on fluid dynamics in bubble column with CFD[J].Journal of East China University of Science and Technology(Natural Science Edition),2010,36(2):173-179.
    [2]张清凤,陈晓平.喷射鼓泡塔海水脱硫特性[J].化工学报,2016,67(4):1572-1579.ZHANG Qingfeng,CHEN Xiaoping. Desulphurization properties of seawater with jet bubbling reactor[J]. CIESC Journal,2016,67(4):1572-1579.
    [3]张奉波,卜亿峰,许明,等.浆态床鼓泡反应器中气含率的分布[J].洁净煤技术,2017,23(3):61-65.ZHANG Fengbo,BU Yifeng,XU Ming,et al. Distribution of gas holdup in slurry bubble column reactor[J]. Clean Coal Technology,2017,23(3):61-65.
    [4]李希,李兆奇,管小平,等.气液鼓泡塔流体力学研究进展[J].高校化学工程学报,2015,29(4):765-779.LI Xi,LI Zhaoqi,GUAN Xiaoping,et al.Progress in hydrodynamics of gas-liquid bubble columns[J].Journal of Chemical Engineering of Chinese Universities,2015,29(4):765-779.
    [5]梁其宏.鼓泡塔内近壁效应的实验研究和多相流模型的仿真验证[D].镇江:江苏大学,2017.
    [6]翟甜.影响鼓泡塔气—液两相流流体力学行为因素的研究[D].西安:西北大学,2014.
    [7] TORREJean-Philippe,FLETCHER David F,LASUYE Thierry,et al.An experimental and computational study of the vortex shape in a partially baffled agitated vessel[J]. Chemical Engineering Science,2007,62(7):1915-1926.
    [8] TORRE J P,FLETCHER D F,LASUYE T,et al.Transient hydrodynamics and free surface capture of an under baffled stireed tank during stopping[J]. Chemical Engineering Research and Design,2007,85(A5):626-636.
    [9]舒树礼.基于格子波尔兹曼方法的鼓泡塔反应器复杂流动的多尺度模拟[D].北京:中国科学院研究生院,2016.
    [10]周颖倩,钟文琪,刘飞,等.烧结烟气鼓泡脱硫的三维数值模拟[J].东南大学学报(自然科学版),2015,45(2):314-319.ZHOU Yingqian,ZHONG Wenqi,LIU Fei,et al. Three-dimensional numerical simulation of sintering flue gas desulfurization in bubbling tower[J]. Journal of Southeast University(Natural Science Edition),2015,45(2):314-319.
    [11]李孟,李向阳,王宏智,等.鼓泡塔气液两相流不同曳力模型的数值模拟[J].过程工程学报,2015,15(2):181-189.LI Meng,LI Xiangyang,WANG Hongzhi,et al.Numerical simulation of gas-liquid two-phase flow in a bubble column with various drag models[J].The Chinese Journal of Process Engineering,2015,15(2):181-189.
    [12]管小平.大型鼓泡塔中布气方式与列管内构件对流动的影响研究[D].杭州:浙江大学,2015.
    [13]吴宗应,杨宁.曳力模型对模拟鼓泡塔气含率的影响[J].化工学报,2010,61(11):2817-2822.WU Zongying,YANG Ning. Effect of drag models on simulation of gas hold-up in bubble columns[J]. CIESC Journal,2010,61(11):2817-2822.
    [14] AKHTER Muhammad A Bid,TADE Moses Oludayo,PAREEK Vishnu Kumar.Two-fluid eulerian simulation of bubble column reactors with distributors[J].Journal of Chemical Engineering of Japan,2009,39(8):831-841.
    [15]周强.竖直列管鼓泡塔气液两相流数值模拟[D].上海:华东理工大学,2016.
    [16]李孟.鼓泡塔气液两相及气液固三相流实验研究及数值模拟[D].天津:天津大学,2015.
    [17]袁清.气相脉冲式鼓泡塔流动与传质的实验研究及CFD数值模拟[D].天津:天津大学,2007.
    [18]蔡清白,沈春银,戴干策.大直径浅层鼓泡塔的混合时间[J].化学反应工程与工艺,2007,25(1):23-28.CAI Qingbai,SHEN Chunyin,DAI Gance.Mixing time in a larger diameter shallow bubble column[J].Chemical Reaction Engineering and Technology,2007,25(1):23-28.
    [19]郑权.气液两相反应器内流场特性的CFD模拟[D].大连:大连理工大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700