用户名: 密码: 验证码:
强场预磁化对高浊度黏土污水混凝沉降的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of high magnetic field pre-magnetization on the floc-culation sedimentation of high turbidity clay sewage
  • 作者:李建军 ; 朋许杰 ; 谢蔚 ; 戎鑫 ; Islam ; Nazrul ; 乔尚元 ; 朱金波
  • 英文作者:LI Jianjun;PENG Xujie;XIE Wei;RONG Xin;ISLAM Nazrul;QIAO Shangyuan;ZHU Jinbo;Department of Materials Science and Engineering,Anhui University of Science and Technology;Institute for Superconducting and Electronic Materials,University of Wollongong;
  • 关键词:强场预磁化 ; 混凝沉降 ; 高浊度污水 ; 正交试验 ; zeta电位
  • 英文关键词:pre-magnetizing;;flocculation sedimentation;;high turbidity sewage;;orthogonal test;;zeta potential
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:安徽理工大学材料科学与工程学院;伍伦贡大学超导与电子材料研究所;
  • 出版日期:2019-07-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:07
  • 基金:安徽省自然科学基金资助项目(1908085ME127);; 安徽省高校自然科学研究重点研究资助项目(KJ2016A189);; 国家大学生创新创业基金资助项目(201810361067)
  • 语种:中文;
  • 页:309-315
  • 页数:7
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:X703
摘要
高浊度矿物污水难以高效澄清处理的主要原因之一是黏土矿物颗粒表面荷电且包覆有一层"水化膜",使得矿物颗粒凝聚、絮凝困难。为了提升高浊度污水的混凝澄清效果,降低化学药剂用量,将强场预磁化处理引入混凝沉降过程,采用预磁化-混凝沉降工艺处理高浊度黏土污水。通过单因素变化试验及多因素正交试验,研究了磁场强度、磁化时间等预磁化工艺参数及药剂制度对黏土污水澄清效果的影响。研究结果表明,强磁场作用对高浊度黏土污水的性质具有显著影响,从而使得污水的混凝澄清效果显著提升。黏土絮团的平均沉降速度增大1.92倍,沉降20 min时的尾泥体积减少38.9%,上清液透光率提高54.1%。预磁化最佳的磁场强度范围为178~241 mT。磁场强度减小,磁化效果迅速减弱;磁化强度增加,磁化效果无明显增强。预磁化最佳的磁化时长为90 s左右。在获得同等澄清效果的情况下,预磁化-混凝沉降比常规混凝沉降的絮凝剂用量减少了50%,CaCl_2用量减少了75%。同时,最终尾泥体积反而减小了14.65%。机理分析表明,强场预磁化对矿粒表面的双电层结构及水分子排列构型具有较大影响,从而显著减小了zeta电位减小、减薄了矿粒表面的水化膜。矿粒表面性质的改善可以显著提升黏土矿粒的凝聚效率、促进矿粒与絮凝剂分子的结合,从而提升了高浊度黏土污水的混凝效果。本工作为高泥化矿物污水的澄清处理提供了一种绿色高效的新方法。
        One of the major problems that hinders the effective flocculating setting of high turbidity sewage(HTS) is that the clay particle surface is covered by a "hydration layer" and is electrical charged.This complex surface property of clay particle impedes coagulation and flocculation.In order to improve the sedimentation of HTS and reduce the addition of chemical reagents,high magnetic field was employed to pre-magnetize the HTS before the traditional flocculation process.Factors influencing the pre-magnetization and flocculation(PMF),such as magnetic field intensity,magnetizing time,coagulant and flocculant dosage,were carefully studied by both single factor experiments and orthogonal tests,using a home-made clay HTS.It was observed that the properties of HTS were significantly affected by high-field magnetizing,thus improving clay particle coagulation and flocculation.Compared with the conventional flocculation,the PMF technique had a much better sedimentation effect(after 20 minutes flocculation).The settlement rate of the clay floccules increased by 1.92 times,the tailing slurry volume decreased by 38.9%,and supernatant transmittance increased by 54.1%,respectively.The optimum magnetic field intensity and magnetizing time were proved as 178-241 mT and 90 s,respectively.Further decrease of the magnetic field intensity would lead to a sharp decrease of flocculation.The flocculation would not increase with a further increase of magnetic field intensity.To achieve a similar settlement effect,the PMF technique consumes less chemical reagents,compared with the traditional flocculation technique.The coagulant and flocculant dosage was reduced by 75% and 50%,respectively.In addition,the tailing slurry volume was reduced by 14.65%,which is helpful for the subsequent sludge treatment.Careful characterization shows that the zeta potential of clay particles was re-markably reduced by the 90 s pre-magnetization under a 178-242 mT magnetic field.It was found that the high field pre-magnetizing had a remarkable influence on the molecule structure of the hydration shell and the electric double layer on the particle surface.The decrease of the zeta po-tential and the thickness of hydration layer on the particle surface reduced the electrostatic repulsion both between the clay particles and between the clay particles and the flocculant molecule.The reformative surface properties improved the particle coagulation and the flocculation.As a result,the sedimentation of HTS was improved.This work provides a promising green and efficient method for mineral HTS treatment.
引文
[1] SALVINELLI C,ELMORE A C,REIDMEYER M R,et al.Characterization of the relationship between ceramic pot filter water production and turbidity in source water[J].Water Research,2016,104:28-33.
    [2] 杨建,靳德武.井上下联合处理工艺处理矿井水过程中溶解性有机质变化特征[J].煤炭学报,2015,40(2):439-444.YANG Jian,JIN Dewu.Variation characteristics of dissolved organic matter in underground mine water with combined water treatment process at surface and underground mine[J].Journal of the China Coal Society,2015,40(2):439-444.
    [3] CHANG C L,LIAO C S.Assessing the risk posed by high-turbidity water to water supplies[J].Environmental Monitoring and Assessment,2012,184:3127-3132.
    [4] PENG C,SONG S,FORT T.Study of hydration layers near a hydrophilic surface in water through AFM imaging[J].Surface & Interface Analysis,2010,38(5):975-980.
    [5] YAO M,NAN J,CHEN T.Effect of particle size distribution on turbidity under various water quality levels during flocculation processes[J].Desalination,2014,354:116-124.
    [6] LIN JC T,CHEN J J,LEE D J,et al.Treating high-turbidity storm water by coagulation-membrane process[J].Journal of the Taiwan Institute of Chemical Engineers,2012,43:291-294.
    [7] LI Jianjun,ZHU Jinbo,QIAO Shangyuan,et al.Processing of coal fly ash magnetic spheres for clay water flocculation[J].International Journal of Mineral Processing,2017,169:162-167.
    [8] 刘新新,杨忠莲,高宝玉,等.聚合氯化铁-聚(环氧氯丙烷-二甲胺)复合絮凝剂在模拟水处理中的混凝特性研究[J].环境科学,2013,34(9):3493-3501.LIU Xinxin,YANG Zhonglian,GAO Baoyu,et al.Coagulation characteristics of polyferric chloride-poly (epichlorohydrin-dimethylamine) composite flocculant for simulated water treatment[J].Environmental Science,2013,34(9):3493-3501.
    [9] HURST M,WEBER Shirk M,LION LW.Influence of alum coagulant dose and influent turbidity on floc blanket growth rate,steady-state suspended solids concentration,and turbidity removal.Journal of Environmental Engineering,2016,143(2):04016081
    [10] 付万军,武强,袁世平,等.纤维滤床水过滤机理与滤床优化实验[J].煤炭学报,2006,31(2):196-200.FU Wanjun,WU Qiang,YUAN Shiping.Water filtering mechanism for fiber filtering bed and fiber bed optimization[J].Journal of China Coal Society,2006,31(2):196-200.
    [11] 汤连生,罗珍贵,张龙舰,等.污泥脱水研究现状与新认识[J].水处理技术,2016,42(6):12-17.TANG Liansheng,LUO Zhengui,ZHANG Longjian,et al.Research status and new understanding of sludge dewatering[J].Water Treatment Technology,2016,42(6):12-17.
    [12] 赵凯,杨春风,孙境求,等.超滤的预处理工艺对比研究:化学混凝与电絮凝[J].环境科学,2016,37(12):4706-4711.ZHAO Kai,YANG Chunfeng,SUN Jingqiu,et al.Comparative study on pretreatment process of ultrafiltration:Chemical coagulation and electrocoagulation[J].Environmental Science,2016,37(12):4706-4711.
    [13] TAO D,JIANG X.Electrostatic particle charger,electrostatic separation system,and related methods[P].US 8338734 B2,2012.
    [14] 乔尚元,李建军,朱金波,等.煤泥水处理新技术及发展趋势[J].水处理技术,2016,42(6):8-11.QIAO Shangyuan,LI Jianjun,ZHU Jinbo,et al.New technology and development trend of coal slime water treatment[J].Water Treatment Technology,2016,42(6):8-11.
    [15] AMBASHTA R D,SILANPAA M.Water purification using magnetic assistance:A review[J].Journal of Hazardous Materials,2010,180(1):38-49.
    [16] CHIBOWSKI E,SZCZES A.Magnetic water treatment-A review of the latest approaches[J].Chemosphere,2018,203:54-67.
    [17] COEY J.Magnetic water treatment-how might it work?[J].Philosophical Magazine,2012,92(31):3857-3865.
    [18] MARCIN S,TOMASZ K,LIDIA W.Determination of permanent,electro-magnetic field influence on sewage sludge conditioning[J].Environmental Protection Engineering,2002,28(1):49-53.
    [19] STOLARSKI M,FUCHS B,BOGAL K S,et al.Magnetic field enhanced press-fitration[J].Chemical Engineering Science,2006,61(19):6395-6403.
    [20] LI S Q,WANG M F,ZHU Z A,et al.Application of superconducting HGMS technology on turbid wastewater treatment from converter[J].Separation and Purification Technology,2012,84:56-62.
    [21] 张志军,刘炯天.基于原生硬度的煤泥水沉降性能分析[J].煤炭学报,2014,39(4):757-763.ZHANG Zhijun,LIU Jiongtian.Settling characteristics analysis of coal slime water based on original hardness[J].Journal of China Coal Society,2014,39(4):757-763.
    [22] KOSMULSKI M.pH-dependent surface charging and points of zero charge.IV.Update and new approach[J].Journal of Colloid and Interface Science,2009,337:439-448.
    [23] AU P I,SIOW S Y,AVADIAR L,et al.Muscovite mica and koalin slurries:Yield stress-volume fraction and deflocculation point zeta potential comparison[J].Powder Technology,2014,262:124-130.
    [24] KOCHMARSKY V.Magnetic treatment of water:Possible mechanisms and conditions for applications[J].Magnetic & Electrical Separation,1996,7(2):77-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700