用户名: 密码: 验证码:
泥炭土改良铅锌矿渣下植物修复效果研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Plants remediation effects of peat soil on lead-zinc tailings
  • 作者:李建彬 ; 陈永华 ; 汤春芳 ; 龚紫薇 ; 何蔚
  • 英文作者:LI Jianbin;CHEN Yonghua;TANG Chunfang;GONG Ziwei;HE Wei;College of Environment Science and Engineering, Central South University of Forestry and Technology;
  • 关键词:铅锌尾渣 ; 铅锌矿渣区 ; 土壤改良效果 ; 植物修复效果 ; 泥炭土 ; 湖南郴州资兴
  • 英文关键词:lead-zinc tailings;;lead-zinc slag area;;soil remediation effect;;phytoremediation effect;;peat soil;;Zixing county,Chenzhou,Hunan
  • 中文刊名:中南林业科技大学学报
  • 英文刊名:Journal of Central South University of Forestry & Technology
  • 机构:中南林业科技大学环境科学与工程学院;
  • 出版日期:2019-01-21 11:47
  • 出版单位:中南林业科技大学学报
  • 年:2019
  • 期:02
  • 基金:国家环保公益性项目(201509037);; 湖南省环保科研项目(湘财建指2016-59)
  • 语种:中文;
  • 页:98-105
  • 页数:8
  • CN:43-1470/S
  • ISSN:1673-923X
  • 分类号:X53;X173
摘要
针对铅锌矿渣物理结构差、毒性高、植物成活率低的问题,研究了湖南郴州资兴铅锌矿渣在泥炭土改良下的植物修复效果。以泡桐Paulownia fortunei、夹竹桃Nerium oleander和苎麻Boehmeria nivea为材料,在不同泥炭土浓度(梯度为:CK:0、A1:10%、A2:20%、A3:30%)改良铅锌渣下进行盆栽实验,测定了植物根、茎、叶生物量,根系构型指标、植物与矿渣铅锌含量、矿渣根际土壤pH值、有机质(OM)。研究结果如下:1)随改良剂浓度的增加,3种植物总生物量增量均呈现改良A3> A2> A1> CK的增长趋势,但各部位生物量增长有差异。2)3种植物总根长、根表面积、根体积和根尖都随改良剂浓度增加而增加显著(P <0.05),但根系构型有差异。3)3种植物体内Pb、Zn含量总体上都呈现侧根>主根>茎>叶的分布规律,其中0 夹竹桃>苎麻,Zn减少量排序苎麻>泡桐>夹竹桃。4)随着处理浓度增加,土壤有机质(OM)增加显著, pH降低显著(P <0.05),种植植物后OM含量和pH值增加显著(P <0.05),OM含量增加排序:苎麻>泡桐>夹竹桃,pH值增加排序:夹竹桃>泡桐>苎麻。5)从细根生长和土壤性质相关性来看,泡桐细根根长、体积、表面积、苎麻细根表面积都和根际OM相关性显著,泡桐细根体积、表面积、夹竹桃体积及根尖数和根际pH负相关显著,其他相关性强但不显著。6)3种植物Pb、Zn总累积量基本随着改良处理浓度增加而增加,但植物转移量系数有差异,泡桐和苎麻转移量系数总体上随改良处理浓度增加而增加,而夹竹桃转移量最优的处理为10%泥炭土。
        In view of the poor physical structure, high toxicity, and low plant survival rate in lead-zinc tailings area, the plants remediation effects of peat soil on lead-zinc tailings were studied in Zixing county, Chenzhou, Hunan. Taking Paulownia fortunei,Nerium oleander and Boehmeria nivea as tested materials, the potted experiments was conducted with the improved lead-zinc slag soil prepared from different peat soil concentrations(gradient: CK: 0, A1: 10%, A2: 20%, A3: 30%). And the biomass of plant roots, stems and leaves, the index of root architecture, the content of lead and zinc in plant and slag, the pH value of slag rhizosphere soil and organic matter(OM) were measured in the tested area. The findings are as follows. 1) With the increase of the modifier concentration, the total biomass of the three plants increased, the increments showed a trend of A3 > A2 > A1 > CK, however, among the three plants and CK there were differences of biomass growth in different parts. 2) The total root length, root surface area, root volume and root tip of the three plants increased significantly with the increase of the modifier concentration(P < 0.05), but the root architectures of the three plants were greatly different. 3) The contents of Pb and Zn in the three plants all showed the distribution pattern of lateral root > main root > stem > leaf; In the interval of 0 < d < 1 mm plant diameter class, the number of fine roots of B. nivea was the largest, and the contents of Pb and Zn in the lateral roots of B. nivea were the highest; With the increase of treatment concentration, the contents of Pb and Zn in the lead-zinc tailings decreased significantly(P < 0.05), and the contents of Pb and Zn in the plants decreased significantly after planted(P < 0.05); However, there were differences in the contents of Pb and Zn in rhizosphere of different plants, Pb reduction order of three plants was P. fortunei > N. fortunei > B. nivea, and Zn reduction ranked as B. nivea > P. fortunei > N. oleander. 4)With the increase of treatment concentration, the soil organic matter(OM) increased significantly and the pH decreased significantly(P < 0.05), the OM content and pH value increased significantly after planted(P < 0.05); The increase of OM contents sequenced as B. nivea > P. fortunei > N.oleanderr, and pH increase ranked as N. oleander > P. fortunei > B. nivea. 5) From the correlation between fine root growth and soil properties, the fine root length, volume, surface area of P. fortunei, the fine root surface area of B.nivea were significantly correlated with OM of the two plants; the fine root volume, surface area of P. fortunei, volume and root tip number of N.oleanderr were negatively correlated with rhizosphere pH, while other correlations were strong but not significant. 6) The total accumulation of Pb and Zn in the three plants increased with the increase of treatment concentration, but there were differences in plant transfer amount coefficients, and the transfer amount coefficients of P.fortunei and B.nivea generally increased with the increase of treatment concentration, but the best treatment of N.oleander was the modifier concentration of 10% peat soil.
引文
[1]JUNG M C,THORNTON I.Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine,Korea[J].Applied Geochemistry,1996,11(1):53-59.
    [2]WAHSHA M,BINI C,ARGESE E.Heavy metals accumulation in willows growing on Spolic Technosols from the abandoned Imperina Valley mine in Italy[J].Journal of Geochemical Exploration,2012,123(12):19-24.
    [3]MUDD G M,JOWITT S M,WERNER T.The World’s Lead-Zinc Mineral Resources:Scarcity,Data,Issues and Opportunities[J].Ore Geology Reviews,2017,80:1160-1190.
    [4]MULLINS C E.Physical properties of soils in urban areas[J].Soils in the urban environment,1991,87-118.
    [5]JOHNSONMS,COOKEJA,STEVENSONJKW.Revegetation of metalliferous wastes and land after metal mining[M].Royal Society of Chemistry,Cambridge,1994:31-48.
    [6]HINSINGER P,GOBRAN G R,GREGORY P J.Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes[J].The New phytologist,2005,168(2):293-303.
    [7]BAKER A J M.Accumulators and excluders-Strategies in the response of plants to heavy metals[J].Journal of Plant Nutrition,1981,3(1-4):643-654.
    [8]MINGORANCE M D,VALDéS B,OLIVA S R.Strategies of heavy metal uptake by plants growing under industrial emissions[J].Environment International,2007,33(4):514-520.
    [9]SAWIDIS T,MARNASIDIS A,ZACHARIADIS G.A study of air pollution with heavy metals in Thessaloniki city(Greece)using trees as biological indicators[J].Archives of environmental contamination and toxicology,1995,28(1):118-124.
    [10]RUFOL,RODRíGUEZN,FUENTEVDL.Plant communities of extreme acidic waters:The Rio Tinto case[J].Aquatic Botany,2011,95(2):129-139.
    [11]BERGMANN B A.Five years of Paulownia,field trials in North Carolina[J].New Forests,2003,25(3):185-199.
    [12]YADAV N K,VAIDYA B N,HENDERSON K,et al.A review of Paulownia biotechnology:a short rotation,fast growing multipurpose bioenergy tree[J].American Journal of Plant Sciences,2013,4(11):2070-2082.
    [13]GARCíA-MOROTEFA,LóPEZ-SERRANOFR,MARTíNEZ-GARCíA E,et al.Stem Biomass Production of Paulownia elongata×P.fortunei under Low Irrigation in a Semi-Arid Environment[J].Forests,2014,5(10):2505-2520.
    [14]JIANG Z F,HUANG S Z,HAN Y L.Physiological response of Cu and Cu mine tailing remediation of Paulownia fortunei(Seem)Hemsl[J].Ecotoxicology(London,England),2012,21(3):759-767.
    [15]MADEJóN P,XIONG J,CABRERA F.Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation[J].Journal of Environmental Management,2014,144:176.
    [16]WANG J,ZHANG C B,JIN Z X.The distribution and phytoavailability of heavy metal fractions in rhizosphere soils of Paulowniu fortunei(seem)Hems near a Pb/Zn smelter in Guangdong,PR China.[J].Geoderma,2009,148(3-4):299-306.
    [17]贾婧.苎麻:水土保持的“仙草”[N].科技日报,2007-10-10(5).
    [18]黄闺,孟桂元,陈跃进,等.苎麻对重金属铅耐受性及其修复铅污染土壤潜力研究[J].中国农学通报,2013,29(20):148-152.
    [19]WELLS C E,GLENN D M,EISSENSTAT D M.Changes in the risk of fine-root mortality with age:a case study in peach,Prunus persica(Rosaceae).[J].American journal of botany,2002,89(1):79-87.
    [20]RILEY D,BARBER S A.Salt accumulation at the soybean(Glycine max(L.)Merr)root-soil interface[J].Soil Science Society of America Journal,1970,34(1):154-155.
    [21]NELSON D W,SOMMERS L E,SPARKS D L.Total carbon,organic carbon,and organic matter[J].Methods of Soil Analysis,1996,9:961-1010.
    [22]HESSE P R.A Textbook of Soil Chemical Analysis[J].John Murray,London.1971:120-309.
    [23]HUA D,DANDAN X,MINGSHUN L,et al.Comparison of different digestion methods in analyzing heavy metals content in soils[J].Journal of Guangxi Normal University-Natural Science Edition,2010,28(3),80-83.
    [24]MáTHé-GáSPáR G,SZILI-KOVáCS T,MáTHéP,et al.Change of root and rhizosphere characters of willow(Salix sp)induced by high heavy metal pollution[J].Acta Biologica Szegediensis,2006,50(1-2):37-40.
    [25]BAKER A J M,WALKER PL,SHAW A J.Ecophysiology of metal uptake by tolerant plants[J].1990.
    [26]BISSONNAIS Y L E.Aggregate stability and assessment of soil crustability and erodibility:I.Theory and methodology[J].European Journal of soil science,1996,47(4):425-437.
    [27]WANG Y,STAUFFER C,KELLER C.Changes in Hg fractionation in soil induced by willow[J].Plant and Soil,2005,275(1-2):67-75.
    [28]SéGUIN V,GAGNON C,COURCHESNE F.Changes in water extractable metals,pH and organic carbon concentrations at the soil-root interface of forested soils[J].Plant and Soil,2004,260(1-2):1-17.
    [29]MARTíNEZALCALáI,CLEMENTE R,BERNAL M P.Metal availability and chemical properties in the rhizosphere of Lupinus albus L.growing in a high-metal calcareous soil.[J].Water Air&Soil Pollution,2009,201(1-4):283-293.
    [30]DINKELAKERB,HENGELERC,MARSCHNERH.Distribution and function of proteoid roots and other root clusters[M].Botanica Acta.1995:183-200.
    [31]FUENTE V D L,RUFO L,GUEZ N R.Metal Accumulation Screening of the Río Tinto Flora(Huelva,Spain)[J].Biological trace element research,2010,134(3):318-341.
    [32]KIM K R,OWENS G,NAIDU R.Effect of root-induced chemical changes on dynamics and plant uptake of heavy metals in rhizosphere soils[J].Pedosphere,2010,20(4):494-504.
    [33]张富运.铅锌尾矿库耐性植物的筛选及其耐性机理初步研究[D].长沙:中南林业科技大学,2014.
    [34]龚紫薇,陈永华,陈基权,等.红麻与黄麻在改良铅锌矿渣下的筛选与评价[J].中南林业科技大学学报,2018,38(5):121-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700