用户名: 密码: 验证码:
臭氧浓度升高条件下秸秆还田对大豆叶片生态化学计量特征的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Straw Returning on the Ecological Stoichiometry of Soybean Leaves under Elevated Ozone Concentration
  • 作者:武红艳 ; 王岩 ; 赵天宏 ; 田荣荣 ; 张铭 ; 牟琳
  • 英文作者:WU Hong-Yan;WANG Yan;ZHAO Tian-Hong;TIAN Rong-rong;ZHANG Ming;MU Lin;Agronomy College, Shenyang Agricultural University;
  • 关键词:生态化学计量学 ; 秸秆还田 ; 叶片养分 ; 土壤养分 ; 臭氧
  • 英文关键词:Ecological stoichiometry;;Straw returning;;Leaves nutrient;;Soil nutrient;;Ozone
  • 中文刊名:土壤通报
  • 英文刊名:Chinese Journal of Soil Science
  • 机构:沈阳农业大学农学院;
  • 出版日期:2019-04-06
  • 出版单位:土壤通报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(31570404)资助
  • 语种:中文;
  • 页:109-118
  • 页数:10
  • CN:21-1172/S
  • ISSN:0564-3945
  • 分类号:S141.4;S565.1
摘要
为探讨臭氧胁迫和秸秆还田对大豆叶片C、P、K化学计量特征的影响,本研究采用开顶式气室法(OTCs),研究了两种还田方式(秸秆全量还田和秸秆不还田)对不同臭氧浓度(CK:O3为环境浓度,T1:O3浓度为(80±10)nmol mol-1,T2:O3浓度为(110±10)nmol mol-1)下大豆叶片C、P、K化学计量特征的变化。结果表明:(1)与秸秆不还田相比,秸秆还田使大豆叶片在分枝期CK处理下全P和全K含量显著降低,而C:P和C:K显著升高,T1处理下有机C和全K含量以及C:P显著降低,而P:K显著升高,T2处理下全P和全K含量显著升高;开花期CK处理和T2处理下有机C和全K含量显著上升,而CK处理下C:P显著升高,C:K和P:K显著降低,T2处理下P:K显著降低,T1处理下全K含量显著降低,C:K和P:K显著升高;结荚期臭氧浓度升高处理下有机C和全K以及C:P显著升高,而P:K显著降低;(2)与秸秆不还田相比,在生育前期低臭氧浓度下秸秆还田使土壤有机C含量显著升高,在整个生育过程中全P含量升高,全K含量无显著变化;(3)开花期,叶片有机C与土壤有机C呈显著正相关性,分枝期和开花期叶片全K与土壤全K呈显著负相关性。在臭氧浓度升高条件下,秸秆还田可提高大豆叶片和土壤有机C以及叶片全K含量,有利于生育前期叶片对P素的吸收。
        Open-top chambers(OTCs) were utilized to investigate the change of ozone(O3) stress(CK, environmental concentration; T1: 80 ± 10 nmol mol-1; T2, 110 ± 10 nmol mol-1) on the stoichiometric characteristics of carbon(C),phosphorus(P) and potassium(K) in soybean(Glycine max.) leaves under the straw returning(S1) and no straw returning(S0) treatments. Compared with the S0 treatment, straw returning significantly decreased the contents of P and K in soybean leaves, but significantly increased the ratios of C:P and C:K under the ambient O3 concentration. The contents of C and K in soybean leaves and the ratio of C:P decreased significantly, while the ratio of P:K increased significantly under the O3 concentration of 80 ± 10 nmol mol-1. The contents of P and K in soybean leaves increased significantly under the O3 concentration of 110 ± 10 nmol mol-1 during the branching stage. During the flowering stage, the CK and T2 treatments significantly increased the contents of C and K in soybean leaves. The CK treatment significantly increased the ratio of C:P, but significantly decreased the ratios of C:K and P:K. The ratio of P:K decreased significantly under T2 treatment. The content of K in soybean leaves decreased and the ratios of C:K and P:K increased significantly under T1 treatment. The contents of C and K and the ratio of C:P increased significantly, but P:K was significantly decreased under the elevated O3 concentration. The content of soil organic C under the low O3 concentration was enhanced during the early soybean growth stage, the content of soil total P was increased and the content of soil total K had no significant change during the whole soybean growth period when S1 compared with S0 treatments. The content of C in leaves was significantly correlated with the content of soil organic C at the flowering stage. The content of K in leaves was significantly negative correlated with the content of soil total K at the branching and flowering stages. Under the elevated O3 concentration, straw returning could increase the contents of organic C in soybean leaves and soil and that of total K in soybean leaves, which is beneficial to the absorption of P by leaves during the early soybean growth stage.
引文
[1] FENG Z Z, HU E Z, WANG X K, et al. Ground-level O3 pollution and its impacts on food crops in China:a review[J]. Environment Pollution. 2015, 1:42-48.
    [2] VINGARZAN R. A review of surface ozone background levels and trend[J]. Atmospheric Environment, 2004, 38(21):3431-3442.
    [3]余为仆.秸秆还田条件下盐胁迫对水稻产量与品质形成的影响[D].扬州:扬州大学硕士论文, 2014:1-53.
    [4] AMY T, AUSTIN P M, VITOUSEK. Introduction to a Virtual Special Issue on ecological stoichiometry and global change[J]. New Phytologist. 2012. 196:649-651.
    [5] KERKHOFF A J, ENQUIST B J, ELSER J J, et al. Plant allometry,stoichiometry and the temperature-dependence of primary productivity[J]. Global Ecology and Biogeography. 2005, 14(6):585-598.
    [6] VENTERINK H O, WASSEN M J, VERKROOST A W M, et al.Species richness-productivity patterns differ between N,P and K limited wetlands[J]. Ecology. 2003, 84(8):2191-2199.
    [7] MORGAN P B, BERNACCHI C J, ORT D R, et al. An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean[J]. Plant Physiology. 2004,135(4):2348-2357.
    [8] CAO J X, SHANG H, CHEN Z., et al. Effects of elevated ozone on Stoichiometry and nutrient pools of Phoebe Bournei(Hemsl.)Yang and Phoebe Zhennan S. Lee et F. N. Wei seedlings in subtropical China[J]. Forests. 2016, 7(4):78-88.
    [9] ZHUANG M H, LAM S K, CHEN S L, et al. Elevated tropospheric ozone affects the concentration and allocation of mineral nutrients of two bamboo species[J]. Science of the Total Environment. 2017, 577:231-235.
    [10] SHANG B, FENG Z Z, LI P, et al. Elevated ozone affects C, N and P ecological stoichiometry and nutrient resorption of two poplar clones[J]. Environmental Pollution. 2018, 234:136-144.
    [11]张凡,睢宁,余超然,等.小麦秸秆还田和施钾对棉花产量与养分吸收的效应[J].作物学报, 2014, 40(12):2169-2175.
    [12] BAI Y L, WANG L, LU Y L, et al. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation[J].Journal of Integrative Agriculture. 2015, 14(12):2467–2476.
    [13]鲍士旦.土壤农化分析(第3版)[M].北京:中国农业出版社. 2005.
    [14]彭斌.不同密度条件下臭氧胁迫对水稻生长发育和产量形成的影响—FACE研究[D].江苏:扬州大学博士学位论文, 2014:1-170.
    [15]郑飞翔,王效科,侯培强,等.臭氧胁迫对水稻生长以及C、N、S元素分配的影响[J].生态学报, 2011, 31(6):1479—1486.
    [16] CHEN Z. Studies on Effect of Elevated Ozone on Soil Microbial Communities under Wheat and Rice in Yangtze River Delta,China.Beijing:Research Center for Eco-Environmental Science[J].Chinese Academy of Sciences, 2008:126-131.
    [17] HOWARD D D. Rotation and fertilization effects on corn and soybean yield and soybean cyst N ematode population in a no-tillage system[J]. Agronmy Journal, 1998, 90(4):518-522.
    [18]杨滨娟,黄国勤,徐宁,等.秸秆还田配施不同比例化肥对晚稻产量及土壤养分的影响[J].生态学报, 2014, 34:(13):3779-3787.
    [19]陈娟,曾青,朱建国,等.臭氧和氮肥交互对小麦干物质生产、N、P、K含量及累积量的影响[J].生态环境学报, 2011, 20(4):616-622.
    [20]盖志佳,范文婷,于敦爽,等.连作大豆化感作用研究进展[J].大豆科学, 2012, 31(1):141-144.
    [21]陈洪,米小华,胡庭兴,等.巨桉凋落叶分解对牧草生长和光合特性及土壤酶活性的影响[J].西北植物学报, 2014, 34(4):0810-0819.
    [22] DROGOUDI P D, ASHMORE M R.14C-allocation of flowering and deblossomed strawberry in response to elevated ozone[J]. New Phytologist, 2001, 152(3):455-461.
    [23] CHEN J, ZENG Q, ZHU J G,et al. Interactive effects of elevated ozone and nitrogen on dry matter production, concentration and accumulation of nitrogen, phosphorus and potassium in winter wheat[J]. Ecology and Environmental Sciences, 2011, 20(4):616-622.
    [24] EDWARDS G S, SHERMAN R E, KELLY J M. Red spruce and loblolly pine nutritional responses to acidic precipitation and ozone[J].Environmental Pollution, 1995, 89:9-15.
    [25]潘士亭.近地层臭氧浓度升高对水稻根系生长和养分吸收的影响[D].扬州:扬州大学环境科学与工程学院, 2009, 1-55.
    [26]宾振钧,王静静,张文鹏,等.氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响[J].植物生态学报, 2014,38(3):231-237.
    [27]曾全超,李鑫,董扬红,等.陕北黄土高原土壤性质及其生态化学计量的纬度变化特征[J].自然资源学报, 2015(5):870-879.
    [28] MCGRODDY M E, DAUFRESNE T, HEDIN L O. Scaling of C:N:P stoichiometry in forests worldwide:implications of terrestrial Redfield-type ratios[J]. Ecology, 2004, 85(9):2390-2401.
    [29] AERTS R. Nutrient resorption from senescing leaves of perennials:are there general patterns[J]. Journal of Ecology, 1996, 84(4):597-608.
    [30] ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812):578-580.
    [31]夏强.秸秆还田对土壤养分及其生物学特性影响的研究[D].合肥:安徽农业大学硕士论文, 2013, 1-50.
    [32]刘冬青,辛淑荣,张世贵.不同覆盖方式对旱地棉田土壤环境及棉花产量的影响[J].干旱地区农业研究, 2003, 21(2):18-21.
    [33]王飞,林诚,李清华,等.长期不同施肥下黄泥田土壤-水稻碳氮磷生态化学计量学特征[J].土壤通报, 2017, 48(1):169-176.
    [34]陈展,王效科,段晓男,等.臭氧浓度升高对盆栽小麦根系和土壤微生物功能的影响[J].生态学报, 2007, 27(5):1803-1808.
    [35] YOSHIDA L C, GAMON J A, ANDERSEN C P. Differences in above-and below-ground responses to ozone between two populations of a perennial grass[J]. Plant and Soil,2001, 233:203-211.
    [36] PENG X, ZHU Q H, XIE Z B. The impact of manure, straw and biochar amendments on aggregation and erosion in a hillslope Ultisol[J]. Catena, 2016, 138:30-37.
    [37]黄昌勇.土壤学[M].北京:中国农业出版社. 1999.
    [38]王志勇.小麦/玉米轮作条件下秸秆还田钾素效应硏究[D].北京:中国农业科学院博士论文, 2012:1-95.
    [39]曹娟,闫文德,项文化,等.湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征[J].林业科学, 2015, 51(7):1-8.
    [40]赵维俊,刘贤德,金铭,等.祁连山青海云杉林叶片-枯落物-土壤的碳氮磷生态化学计量特征[J].土壤学报, 2016, 53(2):477-489.
    [41] HEDIN L O. Global organization of terrestrial plant-nutrient interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30):10849-10850.
    [42]杜满义,范少辉,刘广路,等.中国毛竹林碳氮磷生态化学计量特征[J].植物生态学报, 2016, 40(8):760-774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700