用户名: 密码: 验证码:
不同品种水稻对砷的吸收转运及其健康风险研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Arsenic Uptake and Translocation of Different Rice Cultivars and Its Health Risk
  • 作者:李仁英 ; 张婍 ; 谢晓金 ; 李霖 ; 徐向华
  • 英文作者:LI Ren-ying;ZHANG Qi;XIE Xiao-jin;LI Lin;XU Xiang-hua;Department of Agricultural Resources and Environment, School of Applied Meteorology, Nanjing University of Information Science and Technology;Key Laboratory of Agricultural Meteorology;
  • 关键词:水稻 ; ; 转移系数 ; 铁膜 ; 健康风险
  • 英文关键词:Rice;;Arsenic;;Translocation factor;;Iron plaque;;Health risk
  • 中文刊名:土壤通报
  • 英文刊名:Chinese Journal of Soil Science
  • 机构:南京信息工程大学应用气象学院农业资源与环境系;江苏省农业气象重点实验室;
  • 出版日期:2019-04-06
  • 出版单位:土壤通报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金面上项目(41001190,41671318);; 江苏省大学生实践创新训练项目(201810300040Z)资助
  • 语种:中文;
  • 页:243-250
  • 页数:8
  • CN:21-1172/S
  • ISSN:0564-3945
  • 分类号:S511;X503.231;X820.4
摘要
为了比较不同品种水稻砷的积累特点,筛选可食用部分低砷积累水稻品种,研究通过盆栽试验,分析了江苏省常见的11个水稻品种根、茎、叶、谷壳和籽粒中的砷含量、砷的转运系数和根表铁膜厚度及其对砷固持的影响,并预估了不同品种水稻籽粒砷的健康风险。结果表明,不同品种水稻各部位的砷含量差异显著(P <0.05),泰瑞丰5号籽粒中的砷含量最高,而镇稻16号籽粒中的砷含量最低,后者大约是前者的一半。砷在水稻相邻部位的转运系数存在品种间差异(P <0.05),砷在水稻叶与籽粒间的转运系数最大的水稻品种是泰瑞丰5号,最小的是镇稻16号。根表铁膜量在不同品种间差异显著(P <0.05),其中淮稻6号的铁膜量是武运粳23的2.17倍。根表铁膜量与铁膜中的砷含量及水稻根叶中的砷含量均呈显著正相关关系(P <0.05)。不同水稻品种间的目标风险指数(THQ)也存在显著差异,其中泰瑞丰5号的THQ值最高,而镇稻16号的THQ值最低,两者相差0.99倍。研究表明,镇稻16号由于较低的砷吸收和转运能力,在中低砷污染土壤上种植风险较小,而泰瑞丰5号风险最大。
        In order to compare arsenic(As) accumulation characteristics among different rice cultivars and screen out rice cultivars with low As uptake capacity in edible parts, eleven rice cultivars widely grown in Jiangsu Province were employed in our pot experiment for analyzing As concentrations and As transfer factors in various rice tissues, iron plaque on root surface and As sequestration by iron plaque. Health risk of As in grain of different rice cultivars was also assessed. The results showed that As concentrations in various rice tissues among different rice cultivars were significantly different(P < 0.05), with the highest grain As concentration for Tairuifeng 5 and the lowest for Zhendao16, and the concentration in Zhendao 16 was about 50% of that in Tairuifeng 5. Transfer factors of As between adjacent tissues were significantly different among different rice cultivars, with the highest leaf-to-grain transfer factor for Tairuifeng 5 and the lowest for Zhendao 16. There was significant difference in iron plaque amount among different rice cultivars. Iron plaque amount of Huaidao 6 was 2.76 times as much as that of Wuyungeng 23. There was positive correlation between iron plaque and As sequestrated by iron plaque(r = 0.889, P < 0.001). Positive correlation between iron plaque and As concentrations in roots or leaf was also found. Target hazard quotient(THQ) was significantly different among different rice cultivars, with the highest for Tairuifeng 5 and the lowest for Huaidao 6. It is indicated that Zhendao 16 grown in soil with mild As pollution level has lower health risk because it has a lower uptake and transfer capacity of As, but Tairuifeng 5 has higher health risk.
引文
[1]杜乔娣,黄占斌,沈忱,等.环境材料对铅镉砷胁迫下玉米种子萌发的影响[J].农业环境科学学报, 2012, 31(5):874-879.
    [2]余跃,王济,张浩,等.土壤-植物系统中砷的研究进展[J].贵州师范大学学报(自然科学版), 2010, 28(3):113-117.
    [3] SU Y H, MCGRATH S P, ZHAO F J. Rice is more efficient in arsenate uptake and translocation than wheat and barley[J]. Plant and Soil, 2010, 328(1-2):27-34.
    [4] RAKESH T, DEBASIS C, PRBODH K T, et al. Recent advances in arsenic accumulation and metabolism in rice[J]. Molecular Breeding,2010, 26(2):307-323.
    [5]辜娇峰,周航,杨文弢,等.复合改良剂对镉砷化学形态及在水稻中累积转运的调控[J].土壤学报, 2016, 53(6):1576-1585.
    [6]陈丽娜,刘晓娟,刘文菊,等.水分管理模式对水稻根区砷铁磷动态变化规律的影响[J].水土保持学报, 2009, 23(1):93-98.
    [7] LI R Y, STROUD J L, MA J F, et al. Mitigation of arsenic accumulation in rice with water management and silicon fertilization[J]. Environmental Science and Technology, 2009, 43(10):3778-3783.
    [8]沈孝辉,李仁英,徐向华,等.土壤-水稻系统砷迁移累积的影响因素及调控措施[J].土壤通报, 2014, 45(5):1273-1280.
    [9] SYU C H, HUANG C C, JIANG P Y, et al. Arsenic accumulation and speciation in rice grains in?uenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils[J]. Journal of Hazardous Materials, 2015, 286:179-186.
    [10] NORTON G J, PINSON S R, ALEXANDER J, et al. Variation in grain arsenic assessed in a diverse panel of rice(Oryza sativa)grown in multiple sites[J]. New Phytologist, 2012, 193(3):650-664.
    [11] BACHA R E, HOSSNER L R. Characteristics of coating formed on rice roots as affected by Fe and Mn additions[J]. Soil Science Society of America Journal, 1977, 41(5):931-935.
    [12] CHEN C C, DIXON J B, TURNER F T. Iron coatings on rice roots:Morphology and models of development[J]. Soil Science Society of America Journal, 1980, 44(5):1113-1119.
    [13] TAYLOR G J, CROWDER A A, RODDEN R. Formation and morphology of an iron plaque on the roots of Typhalatifolia L. grown in solution culture[J]. America Journal of Botany, 1984, 71(5):666-675.
    [14] HOSSAIN M B, JAHIRUDDIN M, LOEPPERT R H, et al. The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice[J]. Plant and Soil, 2009, 317(1-2):167-176.
    [15] ZIMMER D, KRUSE J, BAUM C, et al. Spatial distribution of arsenic and heavy metals in willow roots from a contaminated floodplain soil measured by X-ray fluorescence spectroscopy[J]. Science of the Total Environment, 2011, 409(19):4094-4100.
    [16] ULRA VUJ, NAKAYAMA A, TANAKA S, et al. Potential for the alleviation of arsenic toxicity in paddy rice using amorphous iron-(hydr)oxide amendments[J]. Soil Science and Plant Nutrition, 2009,55(1):160-169.
    [17] GARNIER J M, TRAVASSAC F, LENOBLE V, et al. Temporal variations in arsenic uptake by rice plants in Bangladesh:the role of iron plaque in paddy fields irrigated with groundwater[J]. Science of the Total Environment, 2010, 408(19):4185-4193.
    [18] LIU W J,ZHU Y G, SMITH F A, et al. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedings(Oryze sativa L.)grown in solution culture?[J]. Journal of Experimental Botany,2004, 55(403):1707-1713.
    [19]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社, 1999.
    [20] ZHENG N, WANG Q C, ZHANG X W, et al. Population health risk due to dietary intake of heavy metals in the industrial area of Huludao City, China[J]. Science of the Total Environment, 2007, 387(1):96–104.
    [21] United States Environmental Protection Agency, Integrated Risk Information System[DB/OL]. http://cfpub.epa.gov/ncea/iris/index.cfm?Fuseaction=iris.show SubstanceList.
    [22]潘晓群,袁宝君,史祖民,等.江苏省城乡居民膳食状况调查研究[J].江苏预防医学, 2007, 18(4):6-9.
    [23]胡莹,黄益宗,刘云霞.砷污染土壤中不同基因型水稻根表铁膜的形成及其对砷吸收和转运影响[J].生态毒理学报, 2013, 8(6):923-930.
    [24] ISLAM S, RAHMAN M M, ISLAM M R, et al. Effect of irrigation and genotypes towards reduction in arsenic load in rice[J]. Science of the Total Environment, 2017, 609:311-318.
    [25]蒋彬,张慧萍.水稻精米中铅镉砷含量基因型差异的研究[J].云南师范大学学报(自然科学版), 2002, 22(3):37-40.
    [26]刘志彦,陈桂珠,田耀武.不同水稻品系幼苗对砷(As)的耐性、吸收及转运[J].生态学报, 2008, 28(7):3328-3235.
    [27] MEI X Q, YE Z H, WONG M H. The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw[J]. Environmental pollution, 2009, 157(8):2550-2557.
    [28] YE X X, SUN B, YIN Y L. Variation of As concentration between soil types and rice genotypes and the selection of cultivars for reducing As in the diet[J]. Chemosphere, 2012, 87(4):384-389.
    [29]董飞,卢瑛,王兴祥,等.华南地区不同品系水稻积累砷特征及其影响因素[J].农业环境科学学报, 2011, 30(2):214-219.
    [30] JIANG S L, SHI C H, WU J G. Genotypic differences in arsenic,mercury, lead and cadmium in milled rice(Oryza sativa L.)[J].International Journal of Food Science and Nutriton. 2012, 63:468–475.
    [31] RAHMAN M A, HASEGAWA H, RAHMAN M M, et al.Accumulation of arsenic in tissues of rice plant(Oryza sativa L.)and its distribution in fractions of rice grain[J]. Chemosphere, 2007, 69:942–948.
    [32] BHATTACHARYA P, SAMAL A C, MAJUMDAR J, et al.Accumulation of arsenic and its distribution in rice plant(Oryza sativa L.)in Gangetic West Bengal, India[J]. Paddy Water Environment, 2010, 8:63–70.
    [33] WU C, ZOU Q, XUE S G, et al. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss(ROL)[J]. Environmental Pollution, 2016, 212(5):27-33.
    [34] LI R Y, ZHOU Z G, ZHANG Y H, et al. Uptake and accumulation characteristics of arsenic and iron plaque in rice at different growth stages[J]. Communications in Soil Science and Plant Analysis, 2015,46(19):2509-2522.
    [35]郭伟,林咸永,程旺大.不同地区土壤中分蘖期水稻根表铁氧化物的形成及其对砷的吸收的影响[J].环境科学, 2010, 31(2):496-502.
    [36]胡莹,黄益宗,刘云霞.砷污染土壤中不同基因型水稻根表铁膜的形成及其对砷吸收和转运影响[J].生态毒理学报, 2013,8(6);923-930.
    [37]曹雲清,徐晓燕,韩磊,等.全生育期淹水联合钝化材料对重度Cd污染下水稻生长和镉富集的影响[J].农业环境科学学报, 2018,37(11):2498-2506.
    [38] CHEN H, TANG Z, WANG P, et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice[J]. Environmental Pollution, 2018, 238:482-490.
    [39]黄亚涛.我国稻米中无机砷的污染分布研究及风险评估[D].北京:中国农业科学院, 2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700