用户名: 密码: 验证码:
低空遥感无人机影像反演河道流量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Measuring streamflow with low-altitude UAV imagery
  • 作者:赵长森 ; 潘旭 ; 杨胜天 ; 刘昌明 ; 陈新 ; 张含明 ; 潘天力
  • 英文作者:ZHAO Changsen;PAN Xu;YANG Shengtian;LIU Changming;CHEN Xin;ZHANG Hanming;PAN Tianli;College of Water Sciences, Beijing Normal University, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology;School of Geography, Faculty of Geographical Science,Beijing Normal University;College of Water Conservancy and Civil Engineering,Shandong Agricultural University;Jinan Survey Bureau of Hydrology and Water Resources;Dongying Bureau of Hydrology and Water Resources;
  • 关键词:河道流量 ; 无人机 ; 水力学 ; 济南
  • 英文关键词:streamflow;;UAV;;hydraulics;;Jinan
  • 中文刊名:地理学报
  • 英文刊名:Acta Geographica Sinica
  • 机构:北京师范大学水科学研究院城市水循环与海绵城市技术北京市重点实验室;北京师范大学地理科学学部遥感科学国家重点实验室;山东农业大学水利土木工程学院;济南市水文局;东营市水文局;
  • 出版日期:2019-07-19 16:26
  • 出版单位:地理学报
  • 年:2019
  • 期:07
  • 基金:国家重点研发计划(2016YFC0402403,2016YFC0402409)~~
  • 语种:中文;
  • 页:116-132
  • 页数:17
  • CN:11-1856/P
  • ISSN:0375-5444
  • 分类号:TP751;P332
摘要
河道流量在维持水圈系统稳定性、估算国家水能资源可开发量等方面具有重要作用。卫星遥感受其分辨率限制很难准确反演中小河流流量,近地面遥感流量计算方法及传统水文测流方法技术复杂、设备昂贵、测算效率低,限制了其在无资料区、灾害突发事件非接触式应急监测等方面的广泛应用。为此,在充分吸收国内外遥感反演河道流量方法优点的基础上,基于低空遥感无人机(UAV)影像,提出了一种适用于各类尺度河流的高效、非接触、简易快速反演河道流量的方法。该方法提供了有、无地面实测大断面两类情况下流量反演途径,通过无人机影像生成点云和表面高程(DSM),基于点云和DSM获取水面宽、糙率、水面比降以及水上大断面信息,采用水力学方法计算河道流量。并根据地面336组野外站点实测数据验证了方法的精度,进一步分析了无地面实测大断面情况下的流量计算误差。结果表明,反演流量在高值区略高于实测流量,可以满足灾害应急监测流量精度需求(R2=0.997,RMSE=4.55 m3/s);无地面实测大断面资料而进行概化时,流量计算误差随水位升高、河宽增大而减小,最大累积误差为最大过水流量的8.28%,误差主要来自于水位低、河宽小、流量小的过水断面底部。考虑到研究区大断面多样性受限,而人类活动影响下的河底断面复杂多样,未来尚需进一步研究提高近河底处大断面概化精度,以提高无地面实测大断面情况下的流量反演精度。本文利用无人机遥感影像反演河道流量的思路可为灾害应急监测提供快速流量监测的新途径,也可为无资料地区遥感水文测站的建立提供重要参考依据。
        Stream flows are of great importance in maintaining a stable hydrosphere and assessing available water resources of a nation. However, previous satellite-methods are difficult to retrieve stream flows for middle-or small-scale rivers due to the satellite course spatial resolution whereas near-ground measuring methods have too complex procedure,requirement of expensive apparatus, or low-efficiency. These shortcomings hindered them to be used widely in non-gauged areas and situations needing non-contact measurement, e.g.,accidental pollution events. This paper presented a novel, non-contact, fast method to calculate streamflow using UAV images which can be easily applied to rivers with different scales of width. Using this method, stream flows can be calculated with or without ground-measured cross-section data. With UAV images it produced point-cloud and DSM(digital surface model)which were then used to calculate values of river-width, roughness, longitudinal water-surface slope and cross-section above water surface. With all these values, the hydraulic method was finally adopted to calculate stream flows. Results show that the method has a satisfactory performance with modelled streamflow values slightly higher than observed ones at high-flow periods(R2= 0.997, RMSE = 4.55 m3/s) with ground-observed cross-section data. When the cross-section data were absent, the cross-section under water can be generalized with the UAV measured above-water cross-section data. Errors in estimating stream flows induced by crosssection generalization decreased with increment of water-level and water-width. The maximum accumulated errors accounted for 8.28% of the bankfull streamflow. The errors were resulted from the generalization of river bottom with un-regular cross-sections. All the results and methodologies could be of great help in streamflow measurement in accidental pollution events and in ungauged areas across the globe.
引文
[1] Wei Zhen, Jia Haifeng, Jiang Qigui, et al. Simulation experiment of phytoplankton growth induced by flow velocity in rivers replenished with reclaimed water. Chinese Journal of Environmental Engineering, 2017, 11(12):6540-6546.[魏桢,贾海峰,姜其贵,等.再生水补水河道中流速对浮游藻类生长影响的模拟实验.环境工程学报, 2017, 11(12):6540-6546.]
    [2] Ruiz J, Macías D, Peters F. Turbulence increases the average settling velocity of phytoplankton cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(51):17720-17724.
    [3] Escart?n J, Aubrey D G. Flow structure and dispersion within algal mats. Estuarine, Coastal and Shelf Science, 1995, 40(4):451-472.
    [4] Deng Xiaoxue, Ye Aizhong, Tong Hongfu. The study of measurement and calculation method on river discharge. China Rural Water and Hydropower, 2015(6):18.[邓斅学,叶爱中,童洪福,等.河道流量测量与计算方法研究.中国农村水利水电, 2015(6):18.]
    [5] Wang Ping. Research on the measurement method of siltation river flow based on visual analysis[D]. Jinan:Shandong University, 2006.[王平.基于视觉分析的淤积河道流量测量方法的研究[D].济南:山东大学, 2006.]
    [6] Zhang Jiqun, Xu Kaiqin, KAMEYAMA, et al. Estimation of river discharge using TOPEX/Poseidon Altimeter data.Acta Geographica Sinica, 2004, 59(1):95-100.[张继群,徐开钦,龟山哲,等.基于TOPEX/Poseidon卫星数据的江河流量测算.地理学报, 2004, 59(1):95-100.]
    [7] Jiang Hui. Retrieval and analysis water quality parameters in Poyang Lake based on multi-source remote sensing data[D]. Nanchang:Nanchang University, 2011.[江辉.基于多源遥感的鄱阳湖水质参数反演与分析[D].南昌:南昌大学, 2011.]
    [8] Li Zili. Research on surface current detection and deep current inversion by using ground wave radar[D]. Wuhan:Wuhan University, 2010.[李自立.地波雷达表面流探测与深层流反演算法研究[D].武汉:武汉大学, 2010.]
    [9] Li Wei. Near-field remote sensing of riverine hydrodynamic processes with 3D large scale particle image velocimetry[D]. Hangzhou:Zhejiang University, 2016.[李蔚.基于立体视觉与LSPIV的河流水动力过程近距遥感测量系统[D].杭州:浙江大学, 2016.]
    [10] Hirpa F A, Hopson T M, De Groeve T, et al. Upstream satellite remote sensing for river discharge forecasting:Application to major rivers in South Asia. Remote Sensing of Environment, 2013, 131:140-151.
    [11] Costa J E, Cheng R T, Haeni F P, et al. Use of radars to monitor stream discharge by noncontact methods. Water Resources Research, 2006, 42(7):27-42.
    [12] Costa J E, Spicer K R, Cheng R T, et al. Measuring stream discharge by non-contact methods:A Proof-of-Concept Experiment. Geophysical Research Letters, 2000, 27(4):553-556.
    [13] LeFavour G, Alsdorf D. Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission digital elevation model. Geophysical Research Letters, 2005, 32(17):404-405.
    [14] Jung H C, Hamski J, Durand M, et al. Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra rivers. Earth Surface Processes and Landforms, 2010, 35(3):294-304.
    [15] Smith L C, Isacks B L, Forster R R, et al. Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture radar:First results. Water Resources Research, 1995, 31(5):1325-1329.
    [16] Smith L C, Isacks B L, Bloom A L, et al. Estimation of discharge from three braided rivers using synthetic aperture radar satellite imagery:Potential application to ungaged basins. Water Resources Research, 1996, 32(7):2021-2034.
    [17] Song Ping, Liu Yuanbo, Liu Yanchun. Advances in satellite retrieval of terrestrial surface water parameters. Advances in Earth Science, 2011, 26(7):731-740.[宋平,刘元波,刘燕春.陆地水体参数的卫星遥感反演研究进展.地球科学进展, 2011, 26(7):731-740.]
    [18] Xu K, Zhang J, Watanabe M, et al. Estimating river discharge from very high-resolution satellite data:A case study in the Yangtze River, China. Hydrological Processes, 2004, 18(10):1927-1939.
    [19] Leopold L B, Maddock T. The hydraulic geometry of stream channels and some physiographic implications. US Government Printing Office, 1953, 252:22-53.
    [20] Pavelsky T M. Using width‐based rating curves from spatially discontinuous satellite imagery to monitor river discharge. Hydrological Processes, 2014, 28(6):3035-3040.
    [21] Gleason C J, Smith L C. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proceedings of the National Academy of Sciences, 2014, 111(13):4788-4791.
    [22] Gleason C J, Wang J. Theoretical basis for at-many-stations hydraulic geometry. Geophysical Research Letters, 2015, 42(17):7107-7114.
    [23] Zhang J Q, Xu K Q, Watanabc M. Estimation of river discharge using very high-resolution satellite data in Yangtze River//Proceedings of International Symposium on Remote Sensing, October 30-Novermber 1, 2002, Sokcho, Korea, 728-733.
    [24] Getirana A C V, Peters-Lidard C. Estimating water discharge from large radar altimetry datasets. Hydrology and Earth System Sciences, 2013, 17(3):923.
    [25] Papa F, Durand F, Rossow W B, et al. Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008. Journal of Geophysical Research:Oceans, 2010, 115(C12):13.
    [26] Biancamaria S, Lettenmaier D P, Pavelsky T M. The SWOT mission and its capabilities for land hydrology. Surveys in Geophysics, 2016, 37(2):307-337.
    [27] Pavelsky T M, Durand M T, Andreadis K M, et al. Assessing the potential global extent of SWOT river discharge observations. Journal of Hydrology, 2014, 519:1516-1525.
    [28] Gosling S N, Arnell N W. Simulating current global river runoff with a global hydrological model:model revisions,validation, and sensitivity analysis. Hydrological Processes, 2011, 25(7):1129-1145.
    [29] Widén-Nilsson E, Halldin S, Xu C. Global water-balance modelling with WASMOD-M:Parameter estimation and regionalisation. Journal of Hydrology, 2007, 340(1/2):105-118.
    [30] Rawlins M A, Lammers R B, Frolking S, et al. Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model. Hydrological Processes, 2003, 17(13):2521-2539.
    [31] Oki T, Nishimura T, Dirmeyer P. Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways(TRIP). Journal of the Meteorological Society of Japan. Ser. II, 1999, 77(1B):235-255.
    [32] Durand M, Gleason C J, Garambois P A, et al. An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resources Research, 2016, 52(6):4527-4549.
    [33] Birkinshaw S J, Moore P, Kilsby C G, et al. Daily discharge estimation at ungauged river sites using remote sensing.Hydrological Processes, 2014, 28(3):1043-1054.
    [34] Birkinshaw S J, O'donnell G M, Moore P, et al. Using satellite altimetry data to augment flow estimation techniques on the Mekong River. Hydrological Processes, 2010, 24(26):3811-3825.
    [35] Gleason C, Garambois P A, Durand M. Tracking river flows from space. Earth&Space Science News, 2017, 7(26):98.
    [36] Lu Shanlong, Wu Bingfang, Yan Nana. Progress in river runoff monitoring by remote sensing. Advances in Earth Science, 2010, 25(8):820-826.[卢善龙,吴炳方,闫娜娜,等.河川径流遥感监测研究进展.地球科学进展, 2010, 25(8):820-826.]
    [37] Li Xin, Liu Shaomin, Ma Mingguo, et al. Overall design of combined remote sensing observations for eco-hydrological process in Heihe River Basin. Advances in Earth Science, 2012, 27(5):481-498.[李新,刘绍民,马明国,等.黑河流域生态—水文过程综合遥感观测联合试验总体设计.地球科学进展, 2012, 27(5):481-498.]
    [38] Andreadis K M, Clark E A, Lettenmaier D P, et al. Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model. Geophysical Research Letters, 2007, 34(10):403.
    [39] V?r?smarty C J, Willmott C J, Choudhury B J, et al. Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modeling. Water Resources Research, 1996, 32(10):3137-3150.
    [40] Watts A C, Ambrosia V G, Hinkley E A. Unmanned aircraft systems in remote sensing and scientific research:Classification and considerations of use. Remote Sensing, 2012, 4(6):1671-1692.
    [41] Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing:A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92:79-97.
    [42] Lee S, Choi Y. Topographic survey at small-scale open-pit mines using a popular rotary-wing unmanned aerial vehicle(drone). Tunnel and Underground Space, 2015, 25(5):462-469.
    [43] Cho S J, Bang E S, Kang I M. Construction of precise digital terrain model for nonmetal open-pit mine by using unmanned aerial photograph. Economic and Environmental Geology, 2015, 48(3):205-212.
    [44] Neugirg F, Stark M, Kaiser A, et al. Erosion processes in Calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology, 2016, 269:8-22.
    [45] Vivoni E R, Rango A, Anderson C A, et al. Ecohydrology with unmanned aerial vehicles. Ecosphere, 2014, 5(10):1-14.
    [46] Li Deren, Chen Xiaoling, Cai Xiaobin. Spatial information techniques in rapid response to Wenchuan Earthquake.Journal of Remote Sensing, 2008, 12(6):841-851.[李德仁,陈晓玲,蔡晓斌.空间信息技术用于汶川地震救灾.遥感学报, 2008, 12(6):841-851.]
    [47] Zhang Yuan, Zhao Changsen, Yang Shengtian, et al. A method to calculate ecological flow base by coupling multispecies flow velocity requirement. Journal of Beijing Normal University(Natural Science), 2017, 53(3):337-343.[张远,赵长森,杨胜天,等.耦合多物种生态流速的生态需水计算方法.北京师范大学学报:自然科学版, 2017, 53(3):337-343.]
    [48] Zhang Chunbin, Yang Shengtian, Zhao Changsen, et al. Topographic data accuracy verification of small consumer UAV.Journal of Remote Sensing, 2018, 22(1):185-195.[张纯斌,杨胜天,赵长森,等.小型消费级无人机地形数据精度验证.遥感学报, 2018, 22(1):185-195.]
    [49] Zhao C S, Zhang C B, Yang S T, et al. Calculating e-flow using UAV and ground monitoring. Journal of Hydrology,2017, 552:351-365.
    [50] Liu Changming, gabbro, Song Jinxi. Ecological hydraulic radius method for estimating ecological water requirement in river channels. Progress in Natural Science, 2007, 17(1):42-48.[刘昌明,门宝辉,宋进喜.河道内生态需水量估算的生态水力半径法.自然科学进展, 2007, 17(1):42-48.]
    [51] Sun Dongpo, Ding Xin. National Planning Textbook of"11th Five-Year"in General Higher Education:Hydraulics.Zhengzhou:Zhengzhou University Press, 2007.[孙东坡,丁新求.普通高等教育“十一五”国家级规划教材:水力学.郑州:郑州大学出版社, 2007.]
    [52] Yao Zhigang, Bao Xianwen, Li Na, et al. Analysis of tidal and residual currents across Kemen Channel based on shipboard ADCP measurements. Acta Oceanologica Sinica, 2012, 34(6):1-10.[姚志刚,鲍献文,李娜,等.基于船载ADCP观测对罗源湾湾口断面潮流及余流的分析.海洋学报(中文版), 2012, 34(6):1-10.]
    [53] Zhang Daichao, Wan Hong, Wang Minhua. Application analysis of ADCP technology in hydrological discharge test.Water Conservancy Science and Technology and Economy, 2015, 21(1):73-74.[张代超,万红,汪敏华.水文流量测验中走航式ADCP技术的应用分析.水利科技与经济, 2015, 21(1):73-74.]
    [54] Zhao Yanmin, Qin Yanwen, Zheng Binghui, et al. Emergency health risk assessment of water pollution accident. China Environmental Science, 2014, 34(5):1328-1335.[赵艳民,秦延文,郑丙辉,等.突发性水污染事故应急健康风险评价.中国环境科学, 2014, 34(5):1328-1335.]
    [55] Ai Hengyu, Liu Tongwei. Statistical review of the major unexpected water contamination incidents at home in the period from 2000 to 2011. Journal of Safety and Environment, 2013, 13(4):284-288.[艾恒雨,刘同威. 2000-2011年国内重大突发性水污染事件统计分析.安全与环境学报, 2013, 13(4):284-288.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700