用户名: 密码: 验证码:
金属和非金属纳米材料对四膜虫生物毒性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biotoxicity of Metal and Non-metal Nanomaterials to Tetrahymena
  • 作者:韩泽洲 ; 苏锐 ; 史楠 ; 韩明翰
  • 英文作者:Han Zezhou;Su Rui;Shi Nan;Han Minghan;School of Chemical Engineering and Technology,North University of China;Institute of Biotechnology,Shanxi University;
  • 关键词:纳米材料 ; 四膜虫 ; 环境毒理 ; 生物毒性
  • 英文关键词:nanomaterials;;Tetrahymena;;environmental toxicology;;biotoxicity
  • 中文刊名:生态毒理学报
  • 英文刊名:Asian Journal of Ecotoxicology
  • 机构:中北大学化学工程与技术学院;山西大学生物技术所;
  • 出版日期:2019-04-15
  • 出版单位:生态毒理学报
  • 年:2019
  • 期:02
  • 基金:山西省自然科学基金(201801D121234);; 山西大学生物工程省重点实验室开放课题(20160304)
  • 语种:中文;
  • 页:94-100
  • 页数:7
  • CN:11-5470/X
  • ISSN:1673-5897
  • 分类号:X171.5
摘要
纳米材料是"21世纪最有前途的材料",以其优良的性能广泛应用于许多领域,随之以多种形式释放到环境中。目前,关于纳米材料的安全性还没有明确的论断。本文介绍了四膜虫在纳米材料生物效应研究中的优势,重点论述了金属纳米材料、非金属纳米材料对四膜虫的生物效应以及毒性机制的研究状况,并对今后纳米材料生物毒性效应研究提供了建设性的方法及意见。
        Nanomaterials, which are widely used in many fields owing to their excellent properties have been recognized as "the most promising materials of 21 st Century", and then released into the environment in various forms.At present, safety of nanomaterials has not been clearly determined. Advantages of Tetrahymena in the study of biological effects of nanomaterials, and biotoxicity and toxicological mechanisms of metal nanomaterials and non-metallic nanomaterials to Tetrahymena have been discussed in this paper. Additionally, constructive methods and opinions on the future biological toxicity of nanomaterials research were provided.
引文
[1] Zaporotskova I V. Nanotechnologies and nanomaterials:Scientific, economic and political realia of the new century[J]. Vestnik Volgogradskogo Gosudarstvennogo Universiteta, 2015(1):18-29
    [2] Pietroiusti A, Stockmann-Juvala H, Lucaroni F, et al.Nanomaterial exposure, toxicity, and impact on human health[J]. Wiley Interdisciplinary Reviews Nanomedicine&Nanobiotechnology, 2018(2):e1513
    [3] Moskowitz S L. Nanomaterials[M]//Advanced Materials Innovation. John Wiley&Sons, Inc., 2016:287-314
    [4] Zhang M, Jin J, Chang Y N, et al. Toxicological properties of nanomaterials[J]. Journal of Nanoscience&Nanotechnology, 2014, 14(1):717-729
    [5]庄文,陈青,周凤霞.水环境中工程纳米颗粒物的生态毒理学机理及理想模式生物的筛选[J].生态学报,2016, 36(18):5956-5966Zhuang W, Chen Q, Zhou F X. An overview of engineered nano-particle ecotoxicology in aquatic environments:Mechanisms and optimal model organisms[J]. Acta Ecologica Sinica, 2016, 36(18):5956-5966(in Chinese)
    [6] Herrmann L, Erkelenz M, Aldag I, et al. Biochemical and molecular characterisation of Tetrahymena thermophila extracellular cysteine proteases[J]. BMC Microbiology,2006, 6(1):1-9
    [7] Chen X J, Feng W S, Yu Y H. Comparisons among six strains of Tetrahymena, by microcalorimetry[J]. Journal of Thermal Analysis&Calorimetry, 2014, 115(3):2151-2158
    [8] Sharon G, Leibowitz M P, Chettri J K, et al. Comparative study of infection with Tetrahymena, of different ornamental fish species[J]. Journal of Comparative Pathology,2014, 150(2-3):316-324
    [9] Lynn D H, Doerder F P. The life and times of Tetrahy-mena[J]. Methods in Cell Biology, 2012, 109:9-27
    [10] Jie X, Lu X Y, Lu Y M, et al. Tetrahymena, gene expression database(TGED):A resource of microarray data and co-expression analyses for Tetrahymena[J]. Science China:Life Sciences, 2011, 54(1):65-67
    [11] Cassidy-Hanley D M. Chapter 8-Tetrahymena in the Laboratory:Strain Resources, Methods for Culture, Maintenance, and Storage[M]//Methods in Cell Biology. Elsevier Science&Technology, 2012:237-276
    [12] Wang Y, Lin D, Yao C, et al. Toxic effects of metal oxide nanoparticles and their underlying mechanisms[J]. Science China:Materials, 2017, 60(2):93-108
    [13] Ruehle M D, Orias E, Pearson C G.Tetrahymena as a unicellular model eukaryote:Genetic and genomic tools[J].Genetics, 2016, 203(2):649-665
    [14] Chen X J, Feng W S, Yu Y H. Studies on the nongrowth metabolism of the different strains of Tetrahymena, cells by isothermal microcalorimetry[J]. Journal of Thermal Analysis&Calorimetry, 2014, 115(3):2145-2149
    [15] Yan L, Gu Z, Zhao Y. Chemical mechanisms of the toxicological properties of nanomaterials:Generation of intracellular reactive oxygen species[J]. Chemistry-An Asian Journal, 2013, 8(10):2342-2353
    [16] Dev A, Srivastava A K, Karmakar S. Nanomaterial toxicity for plants[J]. Environmental Chemistry Letters, 2017,16(1):1-16
    [17] Juganson K, Mortimer M, Kasemets K, et al. Tetrahymena thermophila, converts toxic silver ions to less toxic silver nanoparticles[J]. Toxicology Letters, 2012, 211(3):S206-S206
    [18] Juganson K, Mortimer M, Ivask A, et al. Mechanisms of toxic action of silver nanoparticles in the protozoan Tetrahymena thermophila:From gene expression to phenotypic events[J]. Environmental Pollution, 2017, 225:481-489
    [19] Shi J P, Ma C Y, Xu B, et al. Effect of light on toxicity of nanosilver to Tetrahymena pyriformis[J]. Environmental Toxicology&Chemistry, 2012, 31(7):1630-1638
    [20] Bondarenko O, Juganson K, Ivask A, et al. Toxicity of Ag, Cu O and Zn O nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro:A critical review[J]. Archives of Toxicology, 2013, 87(7):1181-1200
    [21] Wang D, Lin Z, Wang T, et al. Where does the toxicity of metal oxide nanoparticles come from:The nanoparticles,the ions, or a combination of both[J]. Journal of Hazardous Materials, 2016, 308:328-334
    [22] Chen J, Lu Y G, Sun C. Cytotoxic responses and potential health effects of nanosized Zn O on Tetrahymena thermophila[J]. Advanced Materials Research, 2012, 490-495:3192-3196
    [23] Mortimer M, Kasemets K, Kahru A. Toxicity of Zn O and Cu O nanoparticles to ciliated protozoa Tetrahymena thermophila[J]. Toxicology, 2010, 269(2-3):182-189
    [24] IldikóF K, Piszmán D, Molnár M. Particle size and concentration dependent ecotoxicity of nano-and microscale Ti O2,-comparative study by different aquatic test organisms of different trophic levels[J]. Water Air&Soil Pollution, 2017, 228(7):245
    [25] Xiong D, Fang T, Yu L, et al. Effects of nano-scale Ti O2,Zn O and their bulk counterparts on zebrafish:Acute toxicity, oxidative stress and oxidative damage[J]. Science of the Total Environment, 2011, 409(8):1444-1452
    [26] Wang J, Wang W X. Significance of physicochemical and uptake kinetics in controlling the toxicity of metallic nanomaterials to aquatic organisms[J]. Journal of Zhejiang University Science A, 2014, 15(8):573-592
    [27] Zou X Y, Xu B, Yu C P, et al. Imbalance between oxidative and antioxidative systems:Toward an understanding of visible light-induced titanium dioxide nanoparticles toxicity[J]. Chemosphere, 2013, 93(10):2451-2457
    [28] Daoud D A, Saad A, Saud A. Nanoalumina induces apoptosis by impairing antioxidant enzyme systems in human hepatocarcinoma cells[J]. International Journal of Nanomedicine, 2015, 10(5):3751-3760
    [29]祝星.纳米氧化铝致斜生栅藻(Scenedesmus obliquus)生态毒性效应的研究[D].武汉:华中师范大学, 2012:1-44Zhu X. A study of ecological toxicity induced by nanoA12O3on Scenedesmus obliquus[D]. Wuhan:Central China Normal University, 2012:1-44(in Chinese)
    [30] Zhou M Y, Zhao Q F, Wu Y J, et al. Cytotoxic mechanism of aluminium oxide nanopaticles to Tetrahymena pyriformis[J]. Journal of Biology, 2012, 29(6):47-52
    [31] Khalaj M, Kamali M, Khodaparast Z, et al. Copper-based nanomaterials for environmental decontamination—An overview on technical and toxicological aspects[J]. Ecotoxicology&Environmental Safety, 2018, 148:813-824
    [32] Moschini E, Gualtieri M, Colombo M, et al. The modality of cell-particle interactions drives the toxicity of nanosized Cu O and Ti O2in human alveolar epithelial cells[J].Toxicology Letters, 2013, 222(2):102-116
    [33] Nur S R, Azhar A R, Azlan A A, et al. Effects of the gold nanoparticles(AuNPs)on the proliferation and morphological characteristics of human breast cancer cells(MCF-7)in culture[J]. Solid State Phenomena, 2017, 4479(268):254-258
    [34]徐斌,史俊朋,张洪武.纳米金颗粒进入梨形四膜虫体内的方式及其分布[J].环境化学, 2012, 31(11):1803-1807Xu B, Shi J P, Zhang H W. The uptake and distribution of gold nanoparticles in Tetrahymena pyriformis[J]. Environmental Chemistry, 2012, 31(11):1803-1807(in Chinese)
    [35] Mortimer M, Kahru A, Slaveykova V I. Uptake, localization and clearance of quantum dots in ciliated protozoa Tetrahymena thermophila[J]. Environmental Pollution,2014, 190(7):58-64
    [36] Werlin R, Priester J H, Mielke R E, et al. Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain[J]. Nature Nanotechnology,2011, 6(1):65-71
    [37]罗慧. Cd Se和Ag2Se量子点的生物效应研究[D].武汉:武汉理工大学, 2015:1-56Luo H. The biological effect research of Cd Se and Ag2Se QDs[D]. Wuhan:Wuhan University of Technology, 2015:1-56(in Chinese)
    [38] Sarkar B, Mandal S, Tsang Y F, et al. Designer carbon nanotubes for contaminant removal in water and wastewater:A critical review[J]. Science of the Total Environment, 2018, 612:561-581
    [39] Ghafari P, St-Denis C H, Power M E, et al. Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa[J]. Nature Nanotechnology, 2008, 3(6):347-351
    [40] Zhu Y, Ran T, Li Y, et al. Observation of growth stimulation of Tetrahymena pyriformis exposed to MWNTs[J].Nuclear Techniques, 2007, 30(8):689-693
    [41] Guo J X. Bio-effect of modified multiwall carbon nanotubes on Tetrahymena pyriformis[J]. Journal of Radiation Research&Radiation Processing, 2007, 25(6):326-329
    [42] Mortimer M, Petersen E J, Buchholz B A, et al. Bioaccumulation of multiwall carbon nanotubes in Tetrahymena thermophila by direct feeding or trophic transfer[J]. Environmental Science&Technology, 2016, 50(16):8876-8885
    [43] Uo M, Akasaka T, Watari F, et al. Toxicity evaluations of various carbon nanomaterials[J]. Dental Materials Journal, 2011, 30(3):245-263
    [44] Tao X, Yu Y, Fortner J D, et al. Effects of aqueous stable fullerene nanocrystal(nC60)on Scenedesmus obliquus:Evaluation of the sub-lethal photosynthetic responses and inhibition mechanism[J]. Chemosphere, 2015, 122:162-167
    [45] Kahru A, Dubourguier H C. From ecotoxicology to nanoecotoxicology[J]. Toxicology, 2010, 269(2):105-119
    [46] Huang B M, Lv X H, Wang Q L, et al. Toxicity assessments of fullerene to Daphnia magna:Acute toxicity and chronic toxicity[J]. Journal of Agro-Environment Science, 2017, 36(4):620-624
    [47] Slaveykova V, Sonntag B, Gutiérrez J C. Stress andprotists:No life without stress[J]. European Journal of Protistology, 2016, 55(Pt A):39-49
    [48] Kumar A, Kumar P, Anandan A, et al. Engineered nanomaterials:Knowledge gaps in fate, exposure, toxicity, and future directions[J]. Journal of Nanomaterials, 2014, 2014(7):5-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700