用户名: 密码: 验证码:
长江源和怒江源区水体氮磷化学计量特征初探
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stoichiometric Characteristics of Nitrogen and Phosphorus in Water Body in the Source Regions of the Yangtze River and Nujiang River
  • 作者:叶玉适 ; 陈进 ; 许继军 ; 王冬 ; 殷大聪
  • 英文作者:YE Yu-shi;CHEN Jin;XU Ji-jun;WANG Dong;YIN Da-cong;Water Resources Department, Yangtze River Scientific Research Institute;Hubei Provincial Key Laboratory of Basin Water Resources and Ecological Environmental Sciences,Yangtze River Scientific Research Institute;
  • 关键词:水质 ; 氮磷含量 ; 化学计量特征 ; 长江源 ; 怒江源
  • 英文关键词:water quality;;nitrogen and phosphorus content;;stoichiometric characteristic;;source of the Yangtze River;;source of the Nujiang River
  • 中文刊名:长江科学院院报
  • 英文刊名:Journal of Yangtze River Scientific Research Institute
  • 机构:长江科学院水资源综合利用研究所;长江科学院流域水资源与生态环境科学湖北省重点实验室;
  • 出版日期:2019-09-15
  • 出版单位:长江科学院院报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金项目(41501319);; 国家重点研发计划项目(2017YFC0404502);; 中央级公益性科研院所基金项目(CKSF2016004/SZ,CKSF2016269/SZ);; 湖北高端人才引领第一层次计划项目(2013—2017年)
  • 语种:中文;
  • 页:10-15+26
  • 页数:7
  • CN:42-1171/TV
  • ISSN:1001-5485
  • 分类号:P342
摘要
根据2016年长江源和怒江源区现场调查获取的水质监测资料,分析了长江源和怒江源区河湖水体的基本理化参数、氮磷含量和形态指标,并利用氮磷化学计量比(m(TN)∶m(TP),氮磷质量比)特征评估了江源地区河湖水体的氮磷养分限制状态。结果表明:长江源和怒江源区河湖水体的总氮含量介于0.475~0.956 mg/L,满足地表水Ⅱ—Ⅲ类水质标准;总磷含量介于0.006~0.017 mg/L,满足地表水Ⅰ—Ⅱ类水质标准;硝态氮占总氮含量的43.5%~85.5%,是河湖水体氮素的主要组成部分,对江源地区水体总氮污染的贡献更大;氮磷比介于33.7~79.3,磷素是江源区河湖水体中浮游植物生长的限制性营养因子。研究成果可为揭示江源地区河湖水体的富营养化进程和水生态环境保护提供数据支撑。
        According to the water quality monitoring data obtained from our field survey in the source regions of the Yangtze River and Nujiang River in 2016, we analyzed the physicochemical parameters, nitrogen and phosphorus content and form in water body of rivers and lakes in the source regions, and evaluated the nutrient limitations of nitrogen and phosphorus in rivers and lakes using stoichiometric approach. Results demonstrated that the total nitrogen(TN) content in water body of rivers and lakes in the study area ranged from 0.475 to 0.956 mg/L, ranking between class II and III of surface water quality standard; the total phosphorus(TP) content ranged from 0.006 to 0.017 mg/L, ranking between class Ⅰand II of surface water quality standard. Nitrate nitrogen(NO_3~--N) which accounted for 43.5%-85.5% of TN was the main component of nitrogen in water body of rivers and lakes and contributed more to TN pollution in the source regions of the Yangtze River and Nujiang River. The stoichiometric ratio of nitrogen and phosphorus(m(TN)∶m(TP)) in water body of rivers and lakes of the Yangtze River and Nujiang River was between 33.7 and 79.3, indicating that phosphorus was the limiting nutrient for the growth of phytoplankton in water body of rivers and lakes in the source regions of the Yangtze River and Nujiang River. The research findings offer data support for revealing the eutrophication process and water eco-environment protection in the water body of rivers and lakes in the source regions in the Qinghai-Tibet Plateau.
引文
[1] QIU J.China:The Third Pole[J].Nature,2008,454:393-396.
    [2] CUI M M,MA A Z,QI H Y,et al.Warmer Temperature Accelerates Methane Emissions from the Zoige Wetland on the Tibetan Plateau without Changing Methanogenic Community Composition[J].Scientific Reports,2015,5:11616.
    [3] 姚檀栋,姚治君.青藏高原冰川退缩对河水径流的影响[J].自然杂志,2010,32(1):4-8.
    [4] GUENTHER F,AICHNER B,SIEGWOLF R,et al.A Synthesis of Hydrogen Isotope Variability and Its Hydrological Significance at the Qinghai-Tibetan Plateau[J].Quaternary International,2013,313/314:3-16.
    [5] TONG Y D,CHEN L,CHI J,et al.Riverine Nitrogen Loss in the Tibetan Plateau and Potential Impacts of Climate Change[J].Science of the Total Environment,2016,553:276-284.
    [6] 孙鸿烈,郑度,姚檀栋,等.青藏高原国家生态安全屏障保护与建设[J].地理学报,2012,67(1):3-12.
    [7] 陈进.长江源区水循环机理探讨[J].长江科学院院报,2013,30(4):1-5.
    [8] CHEN H,ZHU Q A,PENG C H,et al.The Impacts of Climate Change and Human Activities on Biogeochemical Cycles on the Qinghai-Tibetan Plateau[J].Global Change Biology,2013,19(10):2940-2955.
    [9] HADDELAND I,HEINKE J,BIEMANS H,et al.Global Water Resources Affected by Human Interventions and Climate Change[J].Proceedings of the National Academy of Sciences,2014,111(9):3251-3256.
    [10] REDFIELD A C.The Biological Control of Chemical Factors in the Environment[J].American Scientist,1958,46(3):205-221.
    [11] ELSER J J,HASSETT R P.A Stoichiometric Analysis of the Zooplankton-phytoplankton Interaction in Marine andFreshwater Ecosystems[J].Nature,1994,370:211-213.
    [12] STERNER R W,ELSER J J.Ecological Stoichiometry:The Biology of Elements from Molecules to the Biosphere[M].Princeton:Princeton University Press,2002.
    [13] 贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J].植物生态学报,2010,34(1):2-6.
    [14] 聂泽宇,梁新强,邢波,等.基于氮磷比解析太湖苕溪水体营养现状及应对策略[J].生态学报,2012,32(1):48-55.
    [15] 卢素锦,武晓翠,侯传莹,等.三江源星星海水体中碳氮磷化学计量特征[J].四川农业大学学报,2016,34(2):221-225.
    [16] 殷大聪,许继军,金燕,等.长江源与澜沧江源区浮游植物组成与分布特性研究[J].长江科学院院报,2017,34(1):61-66.
    [17] HJ/T 91—2002,地表水和污水监测技术规范[S].北京:中国环境科学出版社,2003.
    [18] 卓海华,刘云兵,郑红艳,等.长江源水环境调查分析[J].人民长江,2012,43(12):23-26.
    [19] 黄茁,刘玥晓,赵伟华,等.长江源区近年水质时空分布特征探析[J].长江科学院院报,2016,33(7):46-50,67.
    [20] GUILDFORD S J,HEEKY R E.Total Nitrogen,Total Phosphorus,and Nutrient Limitation in Lakes and Oceans:Is There a Common Relationship?[J] Limnology and Oceanography,2000,45(6):1213-1223.
    [21] 李哲,郭劲松,方芳,等.三峡水库小江回水区不同TN/TP水平下氮素形态分布和循环特点[J].湖泊科学,2009,21(4):509-517.
    [22] 卢素锦,石红霄,李鹏,等.三江源长江地表水水环境现状评价[J].环境与健康杂志,2009,26(7):604-605.
    [23] 秦保平,房玉梅,高翔,等.天津市地表水环境氮污染特征及来源解析[J].城市环境与城市生态,2009,22(4):41-44.
    [24] 叶玉适,梁新强,金熠,等.节水灌溉与控释肥施用对稻田田面水氮素变化及径流流失的影响[J].水土保持学报,2014,28(5):105-112.
    [25] 宋玉芝,秦伯强,高光.氮及氮磷比对附着藻类及浮游藻类的影响[J].湖泊科学,2007,19(2):125-130.
    [26] 朱旭宇,黄伟,曾江宁,等.氮磷比对冬季浮游植物群落结构的影响[J].应用与环境生物学报,2013,19(2):293-299.
    [27] 王晓燕,王静怡,欧洋,等.坡面小区土壤-径流-泥沙中磷素流失特征分析[J].水土保持学报,2008,22(2):1-5.
    [28] 叶玉适,梁新强,李亮,等.不同水肥管理对太湖流域稻田磷素径流和渗漏损失的影响[J].环境科学学报,2015,35(4):1125-1135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700