用户名: 密码: 验证码:
黄陇煤田综放采煤顶板导水裂缝带高度发育特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of height of water flowing fractured zone caused during fully-mechanized caving mining in Huanglong coalfield
  • 作者:李超峰
  • 英文作者:LI Chaofeng;China Coal Research Institute;Xi'an Research Institute Co.Ltd., China Coal Technology and Engineering Group Corp.;Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard;
  • 关键词:黄陇煤田 ; 综放开采 ; 导水裂缝带高度 ; 裂采比 ; 拐点 ; 工作面宽度
  • 英文关键词:Huanglong coalfield;;fully-mechanized caving mining;;height of water flowing fractured zone;;ratio of height of water flowing fractured zone to height of coal mining;;inflection point;;width of working face
  • 中文刊名:煤田地质与勘探
  • 英文刊名:Coal Geology & Exploration
  • 机构:煤炭科学研究总院;中煤科工集团西安研究院有限公司;陕西省煤矿水害防治技术重点实验室;
  • 出版日期:2018-12-07 11:23
  • 出版单位:煤田地质与勘探
  • 年:2019
  • 期:02
  • 基金:国家重点研发计划资助项目(2017YFC0804106);; 中煤科工集团西安研究院有限公司科技创新基金项目(2015XAYMS19)~~
  • 语种:中文;
  • 页:133-140
  • 页数:8
  • CN:61-1155/P
  • ISSN:1001-1986
  • 分类号:TD745
摘要
为了研究黄陇煤田综采放顶煤(综放)采煤工艺条件下的导水裂缝带高度及其发育规律,系统收集区内各矿井实测数据资料,采用数理统计和回归分析方法研究导水裂缝带高度与工作面宽度、煤层埋深以及采高的相关关系。研究结果表明:工作面宽度小于240 m且煤层采高为8.5~9.5 m时,软弱覆岩裂采比和导水裂缝带高度恒大于中硬覆岩;工作面宽度大于90 m且煤层采高大于14.5 m时,软弱覆岩裂采比和导水裂缝带高度恒小于中硬覆岩。综放软弱顶板裂采比和导水裂缝带高度随采高增大均呈单峰状,裂采比是采高的二次函数,导水裂缝带高度是采高的三次函数。裂采比最大为30.63倍,拐点处采高3.56 m;导水裂缝带高度最大为239.97 m,拐点处采高10.41 m。由拐点向两侧采高分别减小或增大时,裂采比和导水裂缝带高度均逐渐减小。综放中硬顶板裂采比和导水裂缝带高度受工作面宽度和煤层采高的共同影响。在工作面宽度一定时,裂采比随着煤层采高增大而逐渐减小且变化幅度越来越小,大致趋于[11.00,14.30]数值区间;在煤层采高一定时,工作面宽度越大裂采比越大。导水裂缝带高度随着工作面宽度和煤层采高增大而增大。
        In order to study the law of height of water flowing fractured zone caused by fully-mechanized caving mining in Huanglong coalfield, this paper has systematically collected the measured data in the region, and methods of mathematical statistics and regression analysis were used to study the relationship among the height of water flowing fractured zone, width of working face, depth of coal seam and height of coal mining. The results show that:When the width of working face was less than 240 m and the height of coal mining was 8.5 to 9.5 m, the height of water flowing fractured zone under the soft stratum was always greater than that under the medium-hard stratum.When the width of working face was greater than 90 m and the height of coal mining was more than 14.5 m, the height of water flowing fractured zone under the soft stratum was always smaller than that under the medium-hard stratum. The height of water flowing fractured zone under the soft stratum and its ratio were both a single-peak curve with a maximum value as the height of coal mining increases. The height of water flowing fractured zone was a cubic function of the height of coal mining, and the ratio was a quadratic function of the height of coal mining.The maximum height was 239.97 m while the height of coal mining was 10.41 m, and the maximum ratio was 30.63 while the height of coal mining was 3.56 m. The height of water flowing fractured zone under the medium-hard stratum was affected by both the width of working face and the height of coal mining. When the width of working face was constant, the ratio of fractured zone height and mining height decreased gradually with the increase of mining height, and the change became more and more smaller, tended approximately to range from 11.00 to 14.30. When the height of coal mining was constant, the ratio increased with the width of working face. The height of the water flowing fracture zone increased with the width of the working face and the height of the coal mining.
引文
[1]刘英锋,王新.黄陇侏罗纪煤田顶板水害防治问题及对策探讨[J].西安科技大学学报,2013,33(4):431-435.LIU Yingfeng,WANG Xin.Water hazard prevention and control in Huanglong Jurassic coalfield[J].Journal of Xi’an University of Science and Technology,2013,33(4):431-435.
    [2]李超峰,张学如.矿井涌水模式及顶板水害防治关键技术[J].煤炭技术,2018,37(6):153-156.LI Chaofeng,ZHANG Xueru.Mode of water inflow of mine and key technologies of controlling and preventing water-inrush from roof[J].Coal Technology,2018,37(6):153-156.
    [3]李超峰.彬长矿区巨厚洛河组垂向差异性研究[J].煤炭技术,2018,37(4):131-133.LI Chaofeng.Vertical differences of thick Luohe Formation in Binchang mining area[J].Coal Technology,2018,37(4):131-133.
    [4]国家煤矿安全监察局.煤矿防治水细则[M].北京:煤炭工业出版社,2018.
    [5]虎维岳.矿山水害防治理论与方法[M].北京:煤炭工业出版社,2005.
    [6]刘英锋,王世东,王晓蕾.深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J].煤炭学报,2014,39(10):1970-1976.LIU Yingfeng,WANG Shidong,WANG Xiaolei.Development characteristics of water flowing fractured zone of overburden deep buried extra thick coal seam and fully-mechanized caving mining[J].Journal of China Coal Society,2014,39(10):1970-1976.
    [7]郭小铭,刘英锋,李超峰.强冲击矿压矿井综放开采覆岩破坏规律研究[J].矿业安全与环保,2018,45(3):24-28.GUO Xiaoming,LIU Yingfeng,LI Chaofeng.Study on rule of overburden failure under strong rock burst and fully mechanized caving mining[J].Mining Safety&Environmental Protection,2018,45(3):24-28.
    [8]李超峰,虎维岳,王云宏,等.煤层顶板导水裂缝带高度综合探查技术[J].煤田地质与勘探,2018,46(1):101-107.LI Chaofeng,HU Weiyue,WANG Yunhong,et al.Comprehensive detection technique for coal seam roof water flowing fractured zone height[J].Coal Geology&Exploration,2018,46(1):101-107.
    [9]冯洁,王苏健,陈通,等.生态脆弱矿区土层中导水裂缝带发育高度研究[J].煤田地质与勘探,2018,46(1):97-100.FENG Jie,WANG Sujian,CHEN Tong,et al.Height of water flowing fractured zone of soil layer in the ecologically fragile mining area[J].Coal Geology&Exploration,2018,46(1):97-100.
    [10]尹尚先,徐斌,徐慧,等.综采条件下煤层顶板导水裂缝带高度计算研究[J].煤炭科学技术,2013,41(9):138-142.YIN Shangxian,XU Bin,XU Hui,et al.Study on height calculation of water conducted fractured zone caused by fully mechanized mining[J].Coal Science and Technology,2013,41(9):138-142.
    [11]武强,赵苏启,董书宁,等.煤矿防治水手册[M].北京:煤炭工业出版社,2013.
    [12]许家林.岩层采动裂隙演化规律与应用[M].徐州:中国矿业大学出版社,2016.
    [13]许家林,王晓振,刘文涛,等.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,2009,28(2):380-385.XU Jialin,WANG Xiaozhen,LIU Wentao,et al.Effects of primary key stratum location on height of water flowing fracture zone[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(2):380-385.
    [14]许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5):762-769.XU Jialin,ZHU Weibing,WANG Xiaozhen.New method to predict the height of fractured water-conducting zone by location of key strata[J].Journal of China Coal Society,2012,37(5):762-769.
    [15]滕永海.综放开采导水裂缝带的发育特征与最大高度计算[J].煤炭科学技术,2011,39(4):118-120.TENG Yonghai.Development features and max height calculation of water conducted fractured zone caused by fully mechanized top coal caving mining[J].Coal Science and Technology,2011,39(4):118-120.
    [16]许延春,李俊成,刘世奇,等.综放开采覆岩“两带”高度的计算公式及适用性分析[J].煤矿开采,2011,16(2):4-11.XU Yanchun,LI Juncheng,LIU Shiqi,et al.Calculation formula of“Two-Zone”height of overlying strata and its adaptability analysis[J].Coal Mining Technology,2011,16(2):4-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700