用户名: 密码: 验证码:
早期成岩过程中铁元素地球化学循环研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advance in study of the iron geochemical cycle during early diagenesis
  • 作者:王煜 ; 谭先锋 ; 蒋聪 ; 唐远兰 ; 周欢焕 ; 谭东萍 ; 王萍
  • 英文作者:WANG Yu;TAN Xianfeng;JIANG Cong;TANG Yuanlan;ZHOU Huanhuan;TAN Dongping;WANG Ping;School of Petroleum and Natural Gas Engineering,Chongqing University of Science and Technology;Key Laboratory for Exploration and Development of Complex Oil and Gas Field;
  • 关键词:早期成岩 ; 铁元素 ; 元素地球化学 ; 地球化学循环 ; 环境磁学
  • 英文关键词:early diagenesis;;iron;;geochemistry of element;;geochemical cycle;;environmental magnetism
  • 中文刊名:地质找矿论丛
  • 英文刊名:Contributions to Geology and Mineral Resources Research
  • 机构:重庆科技学院石油与天然气工程学院;复杂油气田勘探开发重庆市重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:地质找矿论丛
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(编号:41202043);; 重庆市基础科学与前沿技术项目(编号:2016jcyjA0606);; 国家级大学生科技创新项目(编号:201711551001);; 重庆市大学生科技创新项目(编号:201811551023)联合资助
  • 语种:中文;
  • 页:95-105
  • 页数:11
  • CN:12-1131/P
  • ISSN:1001-1412
  • 分类号:P618.31
摘要
铁是海洋沉积物中重要的氧化还原敏感性元素之一,是早期成岩过程中地球化学循环变化的重要动力因素。早期成岩过程中,表层沉积物中铁氧化物的赋存形态主要可分无定形(弱晶型)铁氧化物和晶型铁氧化物,且前者的含量主要决定着沉积物中铁氧化物的还原活性;铁氧化物可以通过与硫酸盐还原产生的硫化物反应进行还原,还能在铁还原菌的参与下被表层沉积物中的有机质还原,沉积物中活性铁含量、有机质含量、沉积速率、植物根系导氧作用及底栖生物的扰动均能对铁还原率造成影响。早期成岩过程中可以形成黄铁矿,形成机理主要有:1)沉积物中先前形成的硫复铁矿(Fe_3S_4)等前体物质通过加硫反应形成;2)硫过饱和的球粒胶体通过脱水、成核、结晶以及聚合作用而成单个草莓状黄铁矿或初始自行黄铁矿微晶成核、生长、聚集、固化的小型黄铁矿微球团并入更大的胶体状黄铁矿结核、草莓状黄铁矿分组,从而形成黄铁矿集合体;黄铁矿化度(DOP)可作为区分古海洋氧化还原环境的指标。对铁同位素的研究表明,异化还原作用(DIR)过程中产生的铁同位素值偏低;页岩中黄铁矿的铁同位素在2.3Ga附近发生的突变反映了第一次大气氧气增高事件。磁学参数对铁相变化具有良好的反应,环境磁学在早期成岩过程研究中的应用,有助于快速划分铁还原带、研究环境中重金属循环行为。
        Iron is one of the most important redox sensitive elements in marine sediments and an important dynamic factor for geochemical cycling during early diagenesis.In the early diagenesis,iron oxides in surface sediments can be divided into amorphous iron oxides and crystalline iron oxides,and the content of the former mainly determines the activity of iron oxides in sediments.Iron oxides can be reduced by reaction with sulfides produced by sulfate reduction,also reduced by organic matter in surface sediments with the participation of iron-reducing bacteria.The content of active iron,the content of organic matter,the deposition rate,the oxygen conduction of plant roots and the disturbance of benthic organisms all affect the iron reduction rate in sediments.In the early diagenesis,pyrite is formed in two ways:①formed by addition of sulfur to the precursors such as greigite(Fe_3S_4)reaction.②formed by dehydration,nucleation,crystallization and polymerization of sulfur-supersaturated spheroidal colloids as single framboid pyrite or by nucleation,growth,aggregation,incorporation of small pyrite microspheres into larger colloidal pyrite nodules and grouping of framboid pyrite.Degree of pyritization(DOP)is a significant proxy in distinguishing the redox state of ancient oceans.Studies on iron isotopes shows that the iron isotope in DIR is low,and the abrupt change of iron isotope of pyrite in shale around 2.3 Ga corresponds to the first atmosphere oxygen enrichment event.The application of environmental magnetism in the study of early diagenesis is helpful in distinguishing iron reduction zone in sediments and in studying heavy metal recycling behavior in the environment.
引文
[1]梅洪明.一个多层的早期成岩作用模型[J].科学通报,1997(9):947-950.
    [2]鲜本忠,吴战国,姜在兴,等.早期成岩作用研究进展及发展方向[J].中国石油大学学报(自然科学版),2004,28(6):133-139.
    [3]Froelich P N,Klinkhammer G P,Bender M L,et al.Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic:suboxic diagenesis[J].Geochimica Et Cosmochimica Acta,1979,43(7):1075-1090.
    [4]张卫国,俞立中.沉积物磁性测量对铁还原的指示及其在重金属污染研究中的应用[J].科学通报,1998(19):2114-2118.
    [5]Lovley D R.Microbial Fe(Ⅲ)reduction in subsurface environments[J].Fems Microbiology Reviews,1997,20(3-4):305-313.
    [6]Lovley D R.Fe(Ⅲ)and Mn(Ⅳ)Reduction[J].Advances in Microbial Physiology,2000,49(2):219.
    [7]刘喜停,颜佳新.铁元素对海相沉积物早期成岩作用的影响[J].地球科学进展,2011,26(5):482-492.
    [8]朱茂旭,史晓宁,杨桂朋,等.海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J].地球科学进展,2011,26(4):355-364.
    [9]Pyzik A J,Sommer S E.Sedimentary iron monosulfides:Kinetics and mechanism of formation[J].Geochimica Et Cosmochimica Acta,1981,45(5):687-698.
    [10]Bo T.Bacterial Manganese and Iron Reduction in Aquatic Sediments[J].Advances in Microbial Ecology,2000,16(1):41-84.
    [11]Canfield D E,Kristensen E,Thamdrup B.Aquatic geomicrobiology[J].Advances in Marine Biology,2005,48(48):1.
    [12]Eric E Roden.Geochemical and microbiological controls on dissimilatory iron reduction[J].Comptes rendus-Géoscience,2006,338(6):456-467.
    [13]Nickel M,Vandieken V,Brüchert V,et al.Microbial Mn(Ⅳ)and Fe(Ⅲ)reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition[J].Deep Sea Research PartⅡTopical Studies in O-ceanography,2008,55(20-21):2390-2398.
    [14]Smock L A,Kuenzler E J.Seasonal changes in the forms and species of iron and manganese in a seasonally-inundated floodplain swamp[J].Water Research,1983,17(10):1287-1294.
    [15]ador I C,Vale C,Catarino F.Accumulation of Zn,Pb,Cu,Cr and Ni in Sediments Between Roots of the Tagus Estuary Salt Marshes,Portugal[J].Estuarine Coastal&Shelf Science,1996,42(3):393-403.
    [16]Otte M L,Kearns C C,Doyle M O.Accumulation of arsenic and zinc in the rhizosphere of wetland plants[J].Bulletin of Environmental Contamination&Toxicology,1995,55(1):154.
    [17]韩晓非,张卫国,陈满荣,等.长江口潮滩植物对沉积物铁的地球化学循环及磁性特征的影响[J].沉积学报,2003,21(3):495-499.
    [18]Wang T,Peverly J H.Iron Oxidation States on Root Surfaces of a Wetland Plant(Phragmites australis)[J].Soil Science Society of America Journal,1999,63(1):247-252.
    [19]Kristensen E,Andersen F,Holmboe N,et al.Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area,Phuket,Thailand[J].Aquatic Microbial Ecology,2000,22(16):199-213.
    [20]Wilkin R T,Barnes H L.Formation processes of framboidal pyrite[J].Geochimica Et Cosmochimica Acta,1997,61(2):323-339.
    [21]吴雪停,刘丽华,吴能友,等.海洋沉积物中早期成岩作用地球化学研究进展[J].海洋地质前沿,2015,31(12):17-26.
    [22]Soliman M F,Goresy A E.Framboidal and idiomorphic pyrite in the upper Maastrichtian sedimentary rocks at Gabal Oweina,Nile Valley,Egypt:Formation processes,oxidation products and genetic implications to the origin of framboidal pyrite[J].Geochimica Et Cosmochimica Acta,2012,90(4):195-220.
    [23]Rouxel O J,Bekker A,Edwards K J.Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state[J].Science,2005,307(5712):1088-1091.
    [24]何永胜,胡东平,朱传卫.地球科学中铁同位素研究进展[J].地学前缘,2015,22(5):54-71.
    [25]孟庆勇,李安春.海洋沉积物的环境磁学研究简述[J].海洋环境科学,2008,27(1):86-90.
    [26]范长清.东海沉积物中铁(Ⅲ)-氧化物还原活性的动力学研究[D].山东青岛:中国海洋大学,2012.
    [27]Canfield D E.Reactive iron in marine sediments[J].Geochimica Et Cosmochimica Acta,1989,53(3):619-632.
    [28]Lovley D R,Phillips E J P.Competitive Mechanisms for Inhibition of Sulfate Reduction and Methane Production in the Zone of Ferric Iron Reduction in Sediments[J].Applied&Environmental Microbiology,1987,53(11):2636-2641.
    [29]Raiswell R,Canfield D E.Sources of iron for pyrite formation in marine sediments[J].American Journal of Science,1998,298(3):219-245.
    [30]Berner R A.Sedimentary pyrite formation[J].Am.j.sci,1970,268(1):1-23.
    [31]Zopfi J,B9ttcher M E,Bo B J.Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central chile[J].Geochimica Et Cosmochimica Acta,2008,72(3):827-843.
    [32]Nealson D J B K H.Chemical and microbiological studies of sulfide-mediated manganese reduction[J].Geomicrobiology,1986,4(4):361-387.
    [33]Canfield D E,Thamdrup B,Hansen J W.The anaerobic degradation of organic matter in Danish coastal sediments:iron reduction,manganese reduction,and sulfate reduction[J].Geochimica Et Cosmochimica Acta,1993,57(16):3867-3883.
    [34]Lovley D R.Dissimilatory Fe(Ⅲ)and Mn(Ⅳ)reduction[J].Advances in Microbial Physiology,2004,49(2):219.
    [35]Starkey R L,Halvorson H O.Studies on the transformations of iron in nature.Ⅱ.Concerning the importance of microorganisms in the solution and precipitation of iron[J].Soil Science,1927,24(6):381-402.
    [36]Lovley D R,Phillips E J.Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J].Appl Environ Microbiol,1988,54(6):1472-1480.
    [37]Lovley D R,Phillips E J P.Requirement for a Microbial Consortium To Completely Oxidize Glucose in Fe(Ⅲ)-Reducing Sediments[J].Applied&Environmental Microbiology,1989,55(12):3234-3236.
    [38]Lovley D R,Phillips E J,Lonergan D J.Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens[J].Applied&Environmental Microbiology,1989,55(3):700-706.
    [39]Coates J D,Phillips E J,Lonergan D J,et al.Isolation of Geobacter species from diverse sedimentary environments[J].Applied&Environmental Microbiology,1996,62(5):1531-1536.
    [40]Tor J M,Kashefi K,Lovley D R.Acetate Oxidation Coupled to Fe(Ⅲ)Reduction in Hyperthermophilic Microorganisms[J].Applied&Environmental Microbiology,2001,67(3):1363-1365.
    [41]Jensen M M,Bo T,Rysgaard S,et al.Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition[J].Biogeochemistry,2003,65(3):295-317.
    [42]Rust G W.Colloidal Primary Copper Ores at Cornwall Mines,Southeastern Missouri[J].Journal of Geology,1935,43(4):398-426.
    [43]Vallentyne J R.Isolation of Pyrite Spherules from Recent Sediments[J].Limnology&Oceanography,1963,8(1):16-30.
    [44]Oenema O.Pyrite Accumulation in Salt Marshes in the Eastern Scheldt,Southwest Netherlands[J].Biogeochemistry,1990,9(1):75-98.
    [45]Steinike K.A further remark on biogenic sulfides;inorganic pyrite spheres[J].Economic Geology,1963,58(6):998-1000.
    [46]Ostwald J,England B M.Notes on framboidal pyrite from Allandale New South Wales,Australia[J].Mineralium Deposita,1977,12(1):111-116.
    [47]Allen K D,Hahn G A.Geology of the Sunbeam and Grouse Creek gold-silver deposits,Yankee Fork mining district,Eocene Challis volcanic field,Idaho;a volcanic dome-and volcaniclastic-hosted epithermal system[J].1994(8):1964-1982.
    [48]Raiswell R.Pyrite information in euxinic and semi-euxinic sediments[J].American Journal of Science,1985,285(8):710-724.
    [49]Dean W E,Arthur M A.Iron-sulfur-carbon relationships in organic-carbon-rich sequences;I Cretaceous Western Interior Seaway[J].American Journal of Science,1989,289:708-743.
    [50]Raiswell R.Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation[J].Journal of Sedimentary Petrology,1988,58(5):812-819.
    [51]Canfield D E.The reactivity of sedimentary iron minerals toward sulfide[J].Amer.j.science,1992,292(9):659-683.
    [52]Duan Y,Severmann S,Anbar A D,et al.Isotopic evidence for Fe cycling and repartitioning in ancient oxygen-deficient settings:Examples from black shales of the mid-to-late Devonian Appalachian basin[J].Earth&Planetary Science Letters,2010,290(3-4):244-253.
    [53]Holland H.The oxygenation of the atmosphere and oceans[J].Philos Trans R Soc Lond B Biol Sci,2006,361(1470):903-915.
    [54]Och L M,Shields-Zhou G A.The Neoproterozoic oxygenation event:Environmental perturbations and biogeochemical cycling[J].Earth-Science Reviews,2012,110(1):26-57.
    [55]Guilbaud R,Butler I B,Ellam R M.Abiotic pyrite formation produces a large Fe isotope fractionation[J].Science,2011,332(6037):1548.
    [56]Tangalos G E,Beard B L,Johnson C M,et al.Microbial production of isotopically light iron(Ⅱ)in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks[J].Geobiology,2010,8(3):197-208.
    [57]Beard B L,Johnson C M,Cox L,et al.Iron isotope biosignatures[J].Science,1999,285(5435):1889-1892.
    [58]Beard B L,Johnson C M,Skulan J L,et al.Application of Fe isotopes to tracing the geochemical and biological cycling of Fe[J].Chemical Geology,2003,195(1):87-117.
    [59]Crosby H A,Johnson C M,Roden E E,et al.Coupled Fe(Ⅱ)-Fe(Ⅲ)electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction[J].Environmental Science&Technology,2005,39(17):6698-6704.
    [60]Crosby H A,Roden E E,Johnson C M,et al.The mechanisms of iron isotope fractionation produced during dissimilatory Fe(Ⅲ)reduction by Shewanella putrefaciens and Geobacter sulfurreducens[J].Geobiology,2007,5(2):169-189.
    [61]Johnson C M,Roden E E,Welch S A,et al.Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction[J].Geochimica Et Cosmochimica Acta,2005,69(4):963-993.
    [62]张卫国,俞立中,许羽.环境磁学研究的简介[J].地球物理学进展,1995,10(3):95-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700