用户名: 密码: 验证码:
基于PIV的拉萨裸裂尻摆尾压力场特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on the pressure field characteristics of schizopygopsis younghusbandi Regan tail swinging based on PIV
  • 作者:余英俊 ; 胡晓 ; 石小涛 ; 张永年 ; 洪亮 ; 柯森繁
  • 英文作者:YU Ying-jun;HU Xiao;SHI Xiao-tao;ZHANG Yong-nian;HONG Liang;KE Sen-fan;College of Hydraulic and Environmental Engineering,China Three Gorges University;
  • 关键词:PIV ; 拉萨裸裂尻 ; 摆尾行为 ; 压力分布 ; 力学特性 ; 游泳动力
  • 英文关键词:PIV;;Schizopygopsis younghusbandi Regan;;tail behavior;;pressure distribution;;mechanical properties;;swimming power
  • 中文刊名:实验力学
  • 英文刊名:Journal of Experimental Mechanics
  • 机构:三峡大学水利与环境学院;
  • 出版日期:2018-06-22 17:19
  • 出版单位:实验力学
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(51609125);; 三峡库区生态环境教育部工程研究中心开放基金(2015KF-03);; 湖北省高等学校优秀青年科技创新团队计划鱼类过坝技术项目(T201703)
  • 语种:中文;
  • 页:110-121
  • 页数:12
  • CN:34-1057/O3
  • ISSN:1001-4888
  • 分类号:Q811
摘要
为研究鱼体摆尾时压力场分布特征及其游泳动力的形成过程,本文以拉萨裸裂尻幼鱼为研究对象,利用粒子图像测速技术(PIV)获得幼鱼在自由游泳摆尾的压力分布规律。结果表明:幼鱼需要借助尾鳍的摆动来形成射流推动鱼体前进,沿着尾部轮廓的凹陷处流体压力为负值,正压则沿着尾部轮廓的凸起处分布;拉萨裸裂尻幼鱼的整个摆尾过程可分为"S"形(T=0~50ms)、"C"形(T=50~150ms)和"C"形回摆(T=150~400ms)三个阶段。"S"形阶段,正压区合力F随时间T先减小后增大,负压区合力F随时间T先增大后减小,正压区和负压区的合力F分布范围为0.88~1.03mN/BL、-0.86~-0.38mN/BL;"C"形阶段,正压区和负压区的合力F分别逐渐增大至3.45mN/BL、-1.62mN/BL;"C"形回摆阶段,正压区和负压区的合力F分别逐渐减小至-0.43mN/BL、1.63mN/BL。
        In order to study the characteristics of pressure field distribution during the tail swinging of fish body and the formation process of swimming dynamic force,the pressure distribution rules for free swimming juvenile fish of schizopygopsis younghusbandi Regan when swinging tail are obtained by Particle Image Velocimetry(PIV)technology.The results show that the juvenile fish needs to form a jet by swinging its caudal fin to move forward.The negative pressure is distributed along the depression of the tail profile,and the positive pressure is distributed along the bulge of the tail profile.The whole process of tail swinging can be divided into three stages,including "S"type(T=0~50 ms),"C"type(T=50~150 ms)and"C"type with back swinging(T=150~400 ms).In the"S"-type stage,the resultant force Fof the positive pressure zone decreases firstly and then increases with time,and it is just the opposite in the negative pressure zone.The distribution of resultant force Fin the positive and negative pressure zones ranges from 0.88 to 1.03 mN/BL and from-0.86 to-0.38 mN/BL,respectively.In the"C"-type stage,the resultant force Fof the positive pressure zone and the negative pressure zone will gradually increase to 3.45 mN/BL and-1.62 mN/BL,respectively.In the stage of"C"-type with back swinging,the resultant force Fof the positive pressure zone and the negative pressure zone will gradually reduce to-0.43 mN/BL,1.63 mN/BL,respectively.
引文
[1]Adrian R J.Twenty years of particle image velocimetry[J].Experiments in Fluids,2005,39(2):159-169.
    [2]Drucker E G,Lauder G V.Locomotor forces on a swimming fish:three-dimensional vortex wake dynamics quantified using digital particle image velocimetry[J].Journal of Experimental Biology,1999,202(18):2393.
    [3]Bae J H,Lee K,Shin J K,et al.Measurement of swimming ability of silver fish(Plecoglossus altivelis)using a Particle Imaging Velocimetry[J].Bulletin of the Korean Society of Fisheries Technology,2011,47(4):411-418.
    [4]Dickinson M H,G9tz K G.The wake dynamics and flight forces of the fruit fly drosophila melanogaster[J].The Journal of Experimental Biology,1996,199(9):2085-2104.
    [5]Wieskotten S,Dehnhardt G,Mauck B,et al.Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal(Phoca vitulina)[J].Journal of Experimental Biology,2010,213(13):2194-2200.
    [6]Standen E M,Lauder G V,Standen E M,et al.Hydrodynamic function of dorsal and anal fins in teleost fishes[J].Comparative Biochemistry and Physiology-Part A Molecular&Integrative Physiology,2005,141(3):S141.
    [7]Epps B P,Techet A H.Impulse generated during unsteady maneuvering of swimming fish[J].Experiments in Fluids,2007,43(5):691-700.
    [8]Standen E M.Pelvic fin locomotor function in fishes:three-dimensional kinematics in rainbow trout(Oncorhynchus mykiss)[J].Journal of Experimental Biology,2008,211(18):2931-2942.
    [9]Wen L,Wang T,Wu G,et al.A novel method based on a force-feedback technique for the hydrodynamic investigation of kinematic effects on robotic fish[C]//IEEE International Conference on Robotics and Automation,ICRA 2011,Shanghai,China,9-13 May.DBLP,2011:203-208.
    [10]Borazjani I,Sotiropoulos F,Tytell E D,et al.Hydrodynamics of the bluegill sunfish C-start escape response[J].Journal of Experimental Biology,2012,215(4):671-684.
    [11]Gemmell B J,Fogerson S M,Costello J H,et al.How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust[J].Journal of Experimental Biology,2016,219(24):3884-3895.
    [12]Mnp B,Mallikarjuna J M,Krishnankutty P.Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2Dparticle image velocimetry[J].Robotics&Biomimetics,2016,3(1):1-18.
    [13]Shih A M,Mendelson L,Techet A H.Archer fish jumping prey capture:kinematics and hydrodynamics[J].Journal of Experimental Biology,2017,220(8):1411-1422.
    [14]Moran C J,Ferry L A,Gibb A C.Why does Gila elegans have a bony tail?A study of swimming morphology convergence[J].Zoology,2016,119(3):175-181.
    [15]Nauen J C,Lauder G V.Hydrodynamics of caudal fin locomotion by chub mackerel,Scomber japonicus(Scombridae)[J].Journal of Experimental Biology,2002,205:1709-1724.
    [16]吕永磊,郝世鑫,王宠,等.拉萨河源头水域中浮游生物、鱼类资源调查与分析[J].海洋与湖沼,2016,47(2):407-413(LV Yonglei,HAO Shixing,WANG Chong,et al.Investigation and analysis on plankton and fish resoueces in the source area of Lhasa River,Tibet,China[J].Oceanologia Et Limnologia Sinica,2016,47(2):407-413(in Chinese))
    [17]柯森繁,石小涛,王恩慧,等.简易粒子图像测速(PIV)技术开发与优化技巧[J].长江科学院院报,2016,33(8):144-150(KE Senfan,SHI Xiaotao,WANG Enhui,et al.Development and optimization skills of simple particle image velocimetry technology[J].Journal of Yangtze River Scientific Research Institute,2016,33(8):144-150(in Chinese))
    [18]蒋明,何小元.鲤鱼尾鳍实时三维姿态测量及运动特性分析[J].力学学报,2010,42(6):1244-1249(JIANGMing,HE Xiaoyuan.Real-time 3D profile measurement and kinemetics analysis for carp tail fin[J].Chinese Journal of Theoretical and Applied Mechanics,2010,42(6):1244-1249(in Chinese))
    [19]钟强,陈启刚,王兴奎,等.提高PIV片光源质量的研究[J].实验力学,2013,28(6):692-698(ZHONGQiang,CHEN Qigang,WANG Xingkui,et al.On the improvement of PIV light sheet quality[J].Journal of Experimental Mechanics,2013,28(6):692-698(in Chinese))
    [20]Thielicke W,Stamhuis E J.PIVlab-towards user-friendly,affordable and accurate digital particle image velocimetry in MATLAB[J].Journal of Open Research Software,2014,2(1):e30.
    [21]敬军,李晟,陆夕云,等.鲫鱼C形起动的运动学特征分析[J].实验力学,2004,19(3):276-282(JING Jun,LI Sheng,LU Xiyun,et al.The kinematic analysis of C-start in crucian carp[J].Journal of Experimental Mechanics,2004,19(3):276-282(in Chinese))
    [22]Dabiri J O,Bose S,Gemmell B J,et al.An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements[J].Journal of Experimental Biology,2014,217(3):331-336.
    [23]Li G,Muller U K,van Leeuwen,et al.Body dynamics and hydrodynamics of swimming fish larvae:a computational study[J].Journal of Experimental Biology,2012,215(22):4015-4033.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700