用户名: 密码: 验证码:
皖南伏川SSZ型蛇绿岩的地球化学特征与构造意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemical Characteristics of the SSZ-type Ophiolite in the Fuchuan Area, Southern Anhui, China and Their Tectonic Significances
  • 作者:郑涛 ; 黄德志 ; 崔建军 ; 徐益龙 ; 周炜鉴
  • 英文作者:ZHENG Tao;HUANG De-zhi;CUI Jian-jun;XU Yi-long;ZHOU Wei-jian;School of Geosciences and Info-Physics, Central South University;Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education;Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploratio;In statue of Geomechanics, Chinese Academy of Geological Sciences;
  • 关键词:江南造山带 ; 伏川蛇绿岩 ; SSZ型蛇绿岩 ; 弧后盆地
  • 英文关键词:Jiangnan orogen;;Fuchuan ophiolite;;SSZ-ophiolite;;back-arc basin
  • 中文刊名:矿物学报
  • 英文刊名:Acta Mineralogica Sinica
  • 机构:中南大学地球科学与信息物理学院;有色金属成矿预测与地质环境监测教育部重点实验室(中南大学);有色资源与地质灾害探查湖南省重点实验室;中国地质科学院地质力学研究所;
  • 出版日期:2018-12-18 16:23
  • 出版单位:矿物学报
  • 年:2019
  • 期:03
  • 基金:国家地调局深部地质调查项目(编号:DD20179353);; 安徽省公益性地质调查项目(编号:2012-g-38)
  • 语种:中文;
  • 页:47-60
  • 页数:14
  • CN:52-1045/P
  • ISSN:1000-4734
  • 分类号:P587;P597.3
摘要
伏川蛇绿岩作为华南极为重要的前寒武纪蛇绿岩之一,本文对其中的橄辉岩和辉长岩样品进行了岩石学、地球化学及同位素特征研究。研究表明,伏川蛇绿岩中橄辉岩含有极高的MgO(39.92%~44.95%)和较低的Al_2O_3(0.48%~4.35%)、CaO(0.11%~0.63%)和TiO_2(0.01%~0.06%),稀土元素总量(7.50×10~(-6)~10.62×10~(-6))低于亏损地幔,为一套高度亏损的原始地幔熔融残留物,其部分熔融程度介于22%~26%之间。具"U"型的稀土元素配分模式,I_(Sr)值显著高于地幔,富集LILE,HFSE含量变化大,既继承了亏损地幔源区的特征,又经历不同程度熔体和流体的交代作用,指示其形成于具有一定规模的弧后小洋盆背景。变辉长岩具高MgO(8.78%~13.26%)、Al_2O_3(17.25%~18.75%)和CaO(11.98%~15.14%),贫TiO_2(0.20%~0.28%)、P_2O_5(0.01%~0.02%)及富钠低钾的特征,其稀土元素配分模式较为平坦,具有与亏损地幔相当的Sr、Nd同位素组成,富集LILE,亏损HFSE,显示岛弧(IAT)特点,其不活动元素比值与N-MORB相当,兼具IAT和MORB的地球化学特征,判断其形成于弧后盆地的初始扩张阶段。结合前人已有研究,认为新元古时期,皖南地区存在沟-弧-盆体系,随着华夏板块向扬子板块之下俯冲,本区弧后盆地进一步引张形成小型洋盆。
        The Fuchuan ophiolite is one of the most important Precambrian ophiolites in South China. An integrated study of petrology, geochemistry and isotopes of the olivine pyroxenite and gabbro from the Fuchuan ophiolite has been carried out in this paper. This study shows that the olivine pyroxenite is characterized with high contents of MgO(39.92%-44.95%) and relatively low contents of Al_2O_3(0.48%-4.35%), CaO(0.11%-0.63%), and TiO_2(0.01%-0.06%), with lower ΣREE contents(7.50×10~(-6)-10.62×10~(-6)) than that of the primary mantle, indicating that the rock was a series of residuals originated from partial melting of highly depleted primary mantle at partial melting degrees of 22%-26%. In addition, the rocks have high contents of large ion lithophile elements(LILE), varied contents of high filed strength elements(HFSE), higher initial ratios of strontium than that of the mantle, and the U-shaped REE distribution patterns,implying the incorporation of the crustal materials into the rocks. Therefore, it is suggested that the olivine pyroxenite was originated from depleted mantle which was altered by fluid in subduction zone, and could be formed in a small back-arc ocean basin. The meta-gabbro is characterized with high contents of MgO(8.78%-13.26%), Al_2O_3(17.25%-18.75%),and CaO(11.98%-15.14%), low contents of TiO_2(0.20%-0.28%) and P_2O_5(0.01%-0.02%), and rich in Na_2O and poor in K_2O. It has relatively flat REE patterns and similar Sr and Nd isotopic compositions to those of the depleted mantle. In addition, it is enriched in large ion lithophile element(LILE) and depleted in high filed-strength element(HFSE), showing characteristics of the rock formed in island-arc setting(IAT). The ratios of inactive elements of these samples are similar to that of the normal mid-ocean ridge basalt(N-MORB). It exhibits both MORB and IAT geochemical characteristics,indicating that it could be formed in the initial extensional stage of the back-arc basin. Integrated with previous studies, we propose that there was a trench-arc-basin system in southern Anhui Province between the Yangtze and Cathaysia blocks during Neo-proterozoic period. With the subduction of Cathaysia block down to the Yangtze block, the back-arc basin was furtherly extended to form a small ocean basin.
引文
[1]张旗,周国庆.中国蛇绿岩[M].北京:科学出版社,2001:1-80.
    [2]周国庆.蛇绿岩研究新进展及其定义和分类的再讨论[J].南京大学学报(自然科学),2008,44(1):1-24.
    [3]白文吉,甘启高,杨经绥,等.江南古陆东南缘蛇绿岩完整层序剖面的发现和基本特征[J].岩石矿物学杂志,1986,5(4):289-299.
    [4]Chen J F,Folanaka,Xing F M,et al.Magmatism along the southeastern margin of the Yangtze block:Precambrian collision of the Yangtze and Cathysia blocks of China[J].Geology,1991,19(8):815-818.
    [5]周新民,邹海波,杨杰东.安徽歙县伏川蛇绿岩套的Sm-Nd等时线年龄及其地质意义[J].科学通报,1989,16:1243-1245.
    [6]Zhang S B,Wu R X,Zheng Y F.Neoproterozoic continental accretion in South China:geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen[J].Precambrian Research,2012,220-221(8):45-64.
    [7]Zhang C L,Santosh M,Zou H B,et al.the Fuchuan ophiolite in Jiangnan Orogen:Geochemistry,zircon U-Pb geochronology,Hf isotope and implications for the Neoproterozoic assembly of South China[J].Lithos,2013,179(10):263-274.
    [8]Wu R X,Zheng Y F,Wu Y B,et al.Reworking of juvenile crust:Element and isotope evidence from Neoproterozoic granodiorite in South China[J].Precambrian Research,2006,146(3):179-212.
    [9]丁炳华,史仁灯,支霞臣,等.江南造山带存在新元古代(~850Ma)俯冲作用-来自皖南SSZ型蛇绿岩锆石SHRIMP U-Pb年龄证据[J].岩石矿物学杂志,2008,27(5):375-388.
    [10]杨建明,王希斌,鲍佩声.安徽歙县蛇绿岩地球化学特征及形成构造环境[J].岩石矿物学杂志,1993,12(3):232-242.
    [11]沈渭洲,邹海波,楚雪君,等.安徽伏川蛇绿岩套的Nd-Sr-O同位素研究[J].地质科学,1992,4:333-341.
    [12]Li X H,Zhao J X,Mcculloch M T,et al.Geochemical Sm-Nd isotopic of Neoproterozoic ophiolites from southeastern China:petroge-nesis and ttectonic implications[J].Precambrian Research,1997,81:129-144.
    [13]邢凤鸣.皖南伏川蛇绿岩形成环境的地球化学标志[J].岩石矿物学杂志,1990,9(1):1-12.
    [14]薛怀民,马芳,宋永勤,等.江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束[J].岩石学报,2010,26(11):3215-3244.
    [15]李华芹,谢才富,常海亮,等.新疆北部有色贵金属矿床成矿作用年代学[M].地质出版社,1998:10-24.
    [16]王存智,黄志忠,邢光福,等.赣东北蛇绿岩地幔橄榄岩岩石成因及其地质意义[J].中国地质,2016,43(4):1178-1188.
    [17]辜平阳,李永军,张兵,等.西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年[J].岩石学报,2009,25(6):1364-1372.
    [18]Kelemen,P B,Hanghoj K,Greene A R.One view of the geochemistry of subduction-related magmatic arcs,with an emphasis on primitive andesite and lower crust[J].Treatise on Geochemistry,2003,3:593-660
    [19]Sun S S,Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society London Special Publications,1989,42(1):313-345.
    [20]Coleman R G.Ophiolites:ancient oceanic lithosphere[M].New York:Springer Verlag,1977:1-140.
    [21]Winchester J A,Floyd P A.Geochemical discrimination of different magma series and their differentiation products using immobile elements[J].Chemical Geology,1977,20(4):325-343.
    [22]Miyashiro A.Classification,Characteristics,and Origin of Ophiolites[J].Jour Geol,1975,83(2):249-281.
    [23]Yang J H,Chung S L,Wilde S A,et al.Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt,East China:geochronological,geochemical and Nd-Sr isotopic evidence[J].Chemical Geology,2005,214(1-2):99-125.
    [24]Chen J F,Yan J,Xie Z,et al.Nd and Sr isotopic compositions of igneous rocks from the lower Yangtze region in eastern China:constraints on sources[J].Phys.Chem.Earth(A),2001,26(9-10):719-731.
    [25]Zindler A,Hart S R.Chemical geodynamics[J].Annual Review of Earth and Planetary Sciences,1986,14:493-571.
    [26]Jackson M G,Dasgupta R.Compositions of HIMU,EM1,and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts[J].Earth and Planetary Science Letters,2008,276(1):175-186.
    [27]Salters V J M,Hart S R.The mantle sources of ocean ridges,islands and arcs:the Hf-isotope connection[J].Earth and Planetary Science Letters,1991,104(2-4):364-380.
    [28]Parkinson I J,Pearce J A.Peridotites from the Izu-Bonin-Mariana Forearc(ODP Leg 125):Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting[J].Jour Petrol,1998,39(9):1577-1618.
    [29]Niu Y,Langmuir C H,Kinzler R J.The origin of abyssal peridotites:a new perspective[J].Earth and Planetary Science Letters,1997,152(1):251-265.
    [30]Ghiorso M S,Hirschmann M M,Reiners P W,et al.the pMELTS:A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 Gpa[J].Geochemistry Geophysics Geosystems,2002,3(5):1-35.
    [31]Hart S R,Zindler A.In search of a bulk-Earth composition[J].Chemical Geology,1986,57(3):247-267.
    [32]Jagoutz E,Palme H,Baddenhausen H,et al.The abundances of Major,Minor and Trace Elements in the Earth's Mantle as Derived from Primitive Ultramafic Nodules[J].Geochimica Et Cosmochimica Acta,1979,10(2):2031-2050.
    [33]Dai J G,Wang C S,Hebert R,et al.Petrology and geochemistry of peridotites in the Zhongba ophiolite,Yarlung Zangbo Suture Zone:Implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys[J].Chemical Geology,2011,288(3):133-148.
    [34]Marchesi C,Garrido C J,Godard M,et al.Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt(eastern Cuba)[J].Contributions to Mineralogy and Petrology,2006,151(6):717-736.
    [35]Davidson J P.Crustal contamination versus,subduction zone enrichment:Examples from the Lesser Antilles and implications for mantle source compositions of island arc volcanic rocks[J].Geochimica Et Cosmochimica Acta,1987,51(8):2185-2198.
    [36]Pearce J A,Baker P E,Harvey P K,et al.Geochemical evidence for subduction fluxes,mantle melting and fractional crystallization beneath the South Sandwich island arc[J].Journal of Petrology,1995,36(4):1073-1109.
    [37]Dilek Y,Furnes H,Shallo M.Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana[J].Gondwana Research,2007,11(4):453-475.
    [38]Hawkins J W,Lonsdale P F,Macdougall J D,et al.Petrology of the axial ridge of the Mariana Trough backarc spreading center[J].Earth and Planetary Science Letters,1990,100(1):226-250.
    [39]Cananis B,Lecolle M.Le Diagramme La/10-Y/15-Nb/8:Un outil pour la discrimination des séries volcaniques et la mise enévidence des processus de mélange et/ou de contamination crustale[J].Comptes Rendus De l’AcadéMie Des Sciences.SéRie II.MéCanique,Physique,Chimie,Sciences De L'univers,Sciences De La Terre,1989,309:2023-2029
    [40]Meschede M.A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J].Chem Geol,1986,56:207-218
    [41]王孝磊,周金城,陈昕,等.江南造山带的形成与演化[J].矿物岩石地球化学通报,2017,36(5):714-735.
    [42]吴荣新,郑永飞,吴元保.皖南新元古代花岗闪长岩体锆石U-Pb定年以及元素和氧同位素地球化学研究[J].岩石学报,2005,21(3):587-606.
    [43]汪龙,刘春明,胡召齐,等.皖南鹤城科马提质变玄武岩地球化学特征及大地构造意义[J].中国有色金属学报,2016,26(4):863-877.
    [44]张彦杰,周效华,廖圣兵,等.江南造山带北缘鄣源基性岩地质-地球化学特征及成因机制[J].高校地质学报,2011,17(3):393-405.
    [45]Yao J L,Shu L S,Santosh M.Neoproterozoic arc-trench system and breakup of the South China Craton:Constraints from N-MORB type and arc-related mafic rocks,and anorogenic granite in the Jiangnan orogenic belt[J].Precambrian Research,2014,247(247):187-207.
    [46]Wang X L,Zhou J C,Qiu J S,et al.Geochemistry of the Meso-to Neoproterozoic basic-acid rocks from Hunan Province,South China:implications for the evolution of the western Jiangnan orogen[J].Precambrian Research,2004,135(1):79-103
    [47]Li Z X,Li X H,Kinny P D,et al.Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton,South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia[J].Precambrian Research,2003,122(1-4):85-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700