用户名: 密码: 验证码:
第四类脲酶抑制剂对土壤脲酶活性和微生物量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Fourth-type Urease Inhibitors on Soil Urease Activity and Microbial Growth
  • 作者:王趁义 ; 陈仙仙 ; 黄兆玮 ; 付佳佳 ; 汪少奇
  • 英文作者:Wang Chenyi;Chen Xianxian;Huang Zhaowei;Fu Jiajia;Wang Shaoqi;College of Biology and Environment, Zhejiang Wanli University;Ningbo Shengqian Environmental Technology Development Co., Ltd.;
  • 关键词:第四类脲酶抑制剂 ; Schiff碱配合物 ; 土壤微生物 ; 脲酶活性 ; 生态安全
  • 英文关键词:the fourth type of urease inhibitor;;Schiff base complexes;;soil microorganism;;urease activity;;ecological safety
  • 中文刊名:水土保持通报
  • 英文刊名:Bulletin of Soil and Water Conservation
  • 机构:浙江万里学院生物与环境学院;宁波晟乾环境技术开发有限公司;
  • 出版日期:2019-04-15
  • 出版单位:水土保持通报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目“第四类新型脲酶抑制剂的优化合成、活性筛选及其作用机制研究”(31071856);; 浙江省自然科学基金项目(LY16C150002);; 浙江省重中之重学科“生物工程”学生创新项目(CX2017002; CX2017004);; 国家级大学生创新创业训练计划项目(201810876047X);; 浙江省公益性技术应用研究项目(2010C32060)
  • 语种:中文;
  • 页:155-160
  • 页数:6
  • CN:61-1094/X
  • ISSN:1000-288X
  • 分类号:S154
摘要
[目的]研究第四类脲酶抑制剂对土壤微生物的影响,揭示此类脲酶抑制剂的微生物学效应,为农业生产中施用含Schiff碱配合物型脲酶抑制剂缓控释尿素的安全性评价提供理论依据。[方法]采用室内恒温恒湿培养的方法,测定在不同浓度(按尿素施用量的0.1%,0.5%,1%)新型Schiff碱铜配合物型脲酶抑制剂作用下土壤脲酶活性以及土壤细菌、真菌和放线菌微生物量指标。[结果]①当抑制剂施用浓度为0.1%和0.5%时对土壤脲酶活性影响不显著,当施用浓度为1%时,对土壤脲酶活性抑制效果最好,最大抑制率达40.8%,起到了适度调控的目的;②土壤细菌、真菌和放线菌对尿素水解的敏感程度不同,其中放线菌和真菌比较敏感,尿素水解对其最大抑制率分别为46.4%和89.7%。与此相反,尿素的水解反而会促进细菌生长,最大促进率达83.6%;③第四类脲酶抑制能够促进土壤细菌、放线菌和真菌的生长,其对细菌、放线菌和真菌的最大促进率分别为86.2%,31.9%和83.6%。因此第四类脲酶抑制剂对土壤放线菌生长的促进作用较小,对土壤细菌和真菌生长的促进作用较大。[结论]第四类脲酶抑制剂对土壤脲酶活性有很好地抑制作用且能促进土壤细菌、真菌和放线菌的生长,施用抑制剂浓度为1%时效果最显著,即1%为其最佳用量。
        [Objectives] The effect of the fourth-type urease inhibitors on soil microorganisms was investigated to provide a theoretical basis for the safety evaluation of slow-release urea containing Schiff base complexes urease inhibitors in agricultural production. [Methods] Using indoor constant temperature and humidity incubation, the soil urease activity and bacteria, fungi and actinomycetes were determined at different concentrations(0.1%, 0.5%, 1% of urea application) under the condition of new Schiff copper base urease inhibitors. [Results] ① When the inhibitor concentration was 0.5% and 0.1%, the effect on soil urease activity was not significant. When the concentration was 1%, the inhibitory effect on soil urease activity was the best, and the maximum inhibition rate was 40.8%, which played the role of moderate regulation. ② Soil bacteria, fungi and actinomycetes showed different sensitivity to urea hydrolysis, among which actinomycetes and fungi were more sensitive. The maximum inhibitory rate of urea hydrolysis on soil actinomycetes and fungi was 46.4% and 89.7%, respectively. In contrast, the hydrolysis of urea can promote the growth of bacteria, and the maximum promotion rate is 83.6%. ③ The fourth-type urea inhibition could promote the growth of soil bacteria, actinomyces and fungi. The maximum promotion rate of bacteria, actinomyces and fungi is 86.2%, 31.9% and 83.6%, respectively. Therefore, it can be concluded that the fourth-type urease inhibitors have little effect on actinomycetes, while have greater effect on bacteria and fungi. [Conclusion] The fourth-type urease inhibitor has a good inhibitory effect on soil urease activity and can promote the growth of soil bacteria, fungi and actinomycetes. The optimal application concentration of the fourth-type urease inhibitor is 1%.
引文
[1] 范夫静,黄国勤,宋同清,等.西南峡谷型喀斯特坡地土壤微生物量C,N,P空间变异特征[J].生态学报,2014,34(12):3293-3301.
    [2] 张新慧,王霞霞,张恩和.2,4-二叔丁基苯酚对啤酒花根际土壤微生物数量的化感效应研究[J].中国生态农业学报,2008,16(6):1606-1608.
    [3] 李雪萍,李建宏,漆永红,等.青稞根腐病对根际土壤微生物及酶活性的影响[J].生态学报,2017,37(17):5640-5649.
    [4] Kluge B,Peters A,Krüger J,et al.Detection of soil microbial activity by infrared thermography(IRT)[J].Soil Biology Biochemistry,2013,57(3):383-389.
    [5] Petersen D G,Blazewicz S J,Firestone M,et al.Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska[J].Environmental Microbiology,2012,14(4):993-1008.
    [6] 姬兴杰,杨颖颖,熊淑萍,等.不同肥料对土壤微生物数量及全氮时空变化的影响[J].中国生态农业学报,2008,16(3):576-582.
    [7] Chen Xianxian,Wang Chenyi,Fu Jiajia,et al.Synthesis,inhibitory activity and inhibitory mechanism studies of Schiff base Cu(Ⅱ) complex as the fourth type urease inhibitors[J].Inorganic Chemistry Communications,2019,99(1):70-76.
    [8] Fu Jiajia,Wang Chenyi,Chen Xianxian,et al.Classification research and type of slow controlled release fertilizers(SRFs):A review[J],Communication in Soil Science and Plant Analysis,2018,49(17),2219-2230.
    [9] 栾江,仇宏伟,赵静.中国农业生产中化肥过度使用状况及地域分布差异[J].青岛农业大学学报:自然科学版,2018,35(1):40-48.
    [10] 张总正.深松和控释尿素对玉米氮素吸收、分配与利用的影响[D].山东泰安:山东农业大学,2013.
    [11] Choudhury A T M A,Kecskés M L,Kennedy I R.Utilization of BNF technology supplementing urea N for sustainable rice production[J].Journal of Plant Nutrition,2014,37(10):1627-1647.
    [12] Guo Jingheng,Liu Xuejun,Zhang Ying,et al.Significant acidification in major chinese croplands[J].Science,2010,327(5968):1008-1010.
    [13] Hube S,Alfaro M A,Scheer C,et al.Effect of nitrification and urease inhibitors on nitrous oxide and methane emissions from an oat crop in a volcanic ash soil[J].Agriculture Ecosystems & Environment,2017,238(3):46-54.
    [14] Reay D S,Davidson E A,Smith K A,et al.Global agriculture and nitrous oxide emissions[J].Nature Climate Change,2012,2(6):410-416.
    [15] 孟庆英,朱宝国,王囡囡,等.控释尿素与常规尿素不同配施对根际土壤微生物数目、土壤氮素及玉米产量的影响[J].土壤通报,2012,43(5):1173-1176.
    [16] 王大鹏,郑亮,吴小平,等.旱地土壤硝态氮的产生、淋洗迁移及调控措施[J].中国生态农业学报,2017,25(12):1731-1741.
    [17] 陆瑞娥.氨基苯乙酮类Schiff碱配体及其配合物的合成、结构和性质研究[D].甘肃兰州:兰州交通大学,2015.
    [18] 郭晨.浅析微生物对土壤肥力的影响[J].吉林农业,2018(12):69.
    [19] 崔亚兰.水田土壤氮库和微生物对持续7 a施用缓释尿素的响应[D].北京:中国科学院大学,2015.
    [20] Giovambattista S,Moreno T,Bruno M.Use of compost to manage Fe nutrition of pear trees grown in calcareous soil[J].Scientia Horticulturae,2012,136(2):87-94.
    [21] Pant A P,Radovich T J K,Hue N V,et al.Biochemical properties of compost tea associated with compost quality and effects on pak choi growth[J].Scientia Horticulturae,2012,148(1):138-146.
    [22] Fan Xiaopin,Yin Chang,Yan Guochao,et al.The contrasting effects of N-(n-butyl)thiophosphoric triamide(NBPT)on N2O emissions in arable soils differing in pH are underlain by complex microbial mechanisms[J].Science of the Total Environment,2018,642(24):155-167
    [23] Wang Chenyi,Ye Jinyun.Synthesis,crystal structures,and urease inhibitory activity of cooper(Ⅱ) complexes with schiff bases[J].Russian Journal of Coordination Chemistry,2011,37(3):235-241.
    [24] 沈萍,陈向东.微生物学试验[M].4版.北京:高等教育出版社,2007.
    [25] 霍璐阳,李志国,刘晴,等.短密木霉、咪唑乙烟酸和种植大豆对土壤脲酶活性的影响[J].东北林业大学学报,2018,46(3):91-93.
    [26] 林先贵.土壤微生物学研究的原理和方法[M].北京:高等教育出版社,2010.
    [27] 杜慧玲,郭平毅.尿素和多效唑对苯磺隆胁迫土壤微生物数量的影响[J].山西农业科学,2009,37(6):45-49.
    [28] 鲁艳红,聂军,廖育林,等.氮素抑制剂对双季稻产量、氮素利用效率及土壤氮平衡的影响[J].植物营养与肥料学报,2018,24(1):95-104.
    [29] 张文学,杨成春,王少先,等.脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响[J].中国水稻科学,2017,31(4):417-424.
    [30] 周旋,吴良欢,戴锋.新型磷酰胺类脲酶抑制剂对不同质地土壤尿素转化的影响[J].应用生态学报,2016,27(12):4003-4012.
    [31] 赵略,孙庆元,于英梅,等.脲酶抑制剂nBPT对土壤脲酶活性和脲酶产生菌的影响[J].大连工业大学学报,2007,26(1):24-27.
    [32] Chen Xianxian,Wang Chenyi,Fu Jiajia,et al.Research status and progress of inhibitory effects and inhibitory mechanism of complex-type urease inhibitors:A review[J].Communications in Soil Science and Plant Analysis,2019,50(3):1-10.
    [33] 曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    [34] Arnebrant K,Baath E,S?derstr?m B.Changes in microfungal community structure after fertilization of scots pine forest soil with ammonium nitrate or urea[J].Soil Biology & Biochemistry,1990,22(3):309-312.
    [35] 姜蓉,徐智,汤利.化肥减量配施不同有机肥对设施菊花土壤微生物功能多样性的影响[J].云南农业大学学报,2017,32(5):895-902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700