用户名: 密码: 验证码:
陇东黄土高原地区油污土壤生物学环境因子对不同生物强化修复方式的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of Bio-environmental Factors of Oily Soil to Different Bioremediation Methods in Longdong Loess Plateau
  • 作者:王金成 ; 井明博 ; 刘建新 ; 张希彪 ; 范小峰 ; 欧晓斌 ; 李东波
  • 英文作者:WANG Jin-cheng;JING Ming-bo;LIU Jian-xin;ZHANG Xi-biao;FAN Xiao-feng;OU Xiao-bin;LI Dong-bo;University Provincial Key Laboratory for Protection and Utilization of Longdong Bio-resources in Gansu Province;College of Life Science and Technology,Longdong University;
  • 关键词:生物学环境因子 ; 油污土壤 ; 生物强化修复 ; 陇东黄土高原
  • 英文关键词:biological environmental factors;;crude-oil contaminated soil;;bioaugmentation;;Longdong Loess Plateau
  • 中文刊名:陇东学院学报
  • 英文刊名:Journal of Longdong University
  • 机构:甘肃省高校陇东生物资源保护与利用省级重点实验室;陇东学院生命科学与技术学院;
  • 出版日期:2019-09-15
  • 出版单位:陇东学院学报
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金项目(31860148);; 甘肃省青年基金计划项目(17JR5RM354);; 中央高校基本科研业务费科技成果转化培育项目(GK201806007);; 甘肃省高等学校科研项目(2014B-091);; 甘肃省极端环境微生物资源与工程重点实验室开放基金(EEMRE201601);; 陇东学院青年资助项目(XYZK1605)
  • 语种:中文;
  • 页:94-100
  • 页数:7
  • CN:62-1197/G4
  • ISSN:1674-1730
  • 分类号:X53
摘要
为了解析油污土壤生物学环境因子对不同生物强化修复方式的响应机制,在陇东黄土高原地区开展了为期3个月的生物强化修复实验,分析了土壤总石油烃(TPH)降解率、土壤酶活性、石油降解菌数量以及土壤微生物群落遗传多样性对不同生物强化修复方式的响应情况。结果显示:(1)土壤TPH降解率以微生物菌剂+紫花苜蓿+金盏菊处理组(T7)最高(66. 22±1. 83%),微生物菌剂+金盏菊处理组(T5)次之(58. 89±1. 51%)(P <0. 05);(2)植物微生物联合修复组(T7、T4和T5)有效提升了土壤多酚氧化酶活性(P <0. 05),而金盏菊和微生物菌剂参与的强化修复组均不同程度刺激了土壤脱氢酶活性(P <0. 05);(3)强化修复组T4、T5、T6和T7土壤微生物Shannon-Wiener指数明显高于其他处理,但T4和T5处理组土壤微生物群落Evenness指数显著高于T6和T7处理组(P <0. 05);(4)紫花苜蓿参与组可有效提升土壤烷烃降解菌数量,而金盏菊参与组则可显著提高土壤芳烃降解数量(P <0. 05)。(5) NMDS及方差分解结果显示,陇东黄土高原地区油污土壤生物学环境因子中土壤酶活性×功能微生物数量以及微生物群落多样性×功能微生物数量的共同作用分别是决定微生物强化修复和植物强化修复土壤TPH降解率的主要生物学环境指标。
        To explore the response mechanism of crude-oil contaminated soil biological environmental factors on different bioaugmentation patterns,the ecological remediation experiment on crude-oil contaminated soil with different bioaugmentation patterns were conducted in Longdong Loess Plateau. The degradation rate of rizospheric soil petroleum hydrocarbons( TPH),amount of TPH-degrading bacteria,soil enzyme activity and its genetic diversity of soil microbial community were investigated. We found that:( 1)the pattern of Microbial agents + Medicago sativa + Calendula officinalis( T7)( 66. 22 ± 1. 83%) demonstrated a higher TPH degradation rate than that of other patterns,and following was pattern of Microbial agents + Calendula officinalis( T5)( 58. 89 ± 1. 51%)( P < 0. 05).( 2) The pattern of combination of plant and microbial agent( T7,T4 and T5) could significantly improve the activity of soil polyphenol oxidase( P < 0. 05),while pattern involved microbial agents and Calendula officinalis could significantly improve the activity of soil dehydrogenase( P < 0. 05).( 3) The patterns including T4,T5,T6 and T7 could significantly improve Shannon-Wiener index of soil microbial community,while Evenness index of soil microbial community in T4 and T5 was significantly higher than that of in T6 and T7( P < 0. 05).( 4) The pattern involved Medicago sativa could significantly improve the amount of alkane-degrading bacteria and high amount of PAHs-degrading bacteria was observed in the pattern involved Calendula officinalis( P < 0. 05).( 5) The analysis results of NMDS and variance decomposition demonstrated that the combined action of soil enzyme activity × amount of TPH-degrading bacteria and genetic diversity of soil microbial community × amount of TPH-degrading bacteria were dominated biological environmental factor to the TPH degradation rate of crude-oil contaminated soil in Longdong Loess Plateau.
引文
[1]吴蔓莉,袁婧,李炜,等.石油污染土壤的微生物修复及土壤微生物活性变化[J].应用与环境生物学报,2016,22(5):878-883.
    [2]Llado S,Solanas A M,de Lapuente J,et al. A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil[J]. Science of the Total Environment,2012(436):262-269.
    [3]Tahhan R A,Ammari T G,Goussous S J,et al. Enhancing the biodegradation of total petroleum hydrocarbons in oily sludge by a modified bioaugmentation strategy[J]. International Biodeterioration&Biodegradation,2011,65(1):130-134.
    [4]Alvarez A,Saez J M,Davila Costa J S,et al. Actinobacteria:Current research and perspectives for bioremediation of pesticides and heavy metals[J].Chemosphere,2017(166):41-62.
    [5]Kuppusamy S,Thavamani P,Venkateswarlu K,et al.Remediation approaches for polycyclic aromatic hydrocarbons(PAHs)contaminated soils:Technological constraints,emerging trends and future directions[J].Chemosphere,2017(168):944-968。
    [6]郝大程,周建强,韩君.土壤重金属和有机污染物的微生物修复:生物强化和生物刺激[J].生物技术通报,2017,33(10):9-17.
    [7]吴蔓莉,陈凯丽,叶茜琼,等.堆肥-生物强化对重度石油污染土壤的修复作用[J].环境科学,2017,38(10):4412-4419.
    [8]程立娟,周启星.野生观赏植物长药八宝对石油烃污染土壤的修复研究[J].环境科学学报,2014,34(4):980-986.
    [9]严昶升.土壤肥力研究方法[M].北京:农业出版社,1988:263-280.
    [10]唐景春,王斐,褚洪蕊,等.玉米草(Zea Mexicana)与海藻寡糖联合修复石油烃污染土壤的研究[J].农业环境科学学报,2010,29(11).
    [11]王如刚,王敏,牛晓伟,等.超声-索氏萃取-重量法测定土壤中总石油烃含量[J].分析化学,2010,38(3):417-420.
    [12]王金成,井明博,段春艳,等.陇东黄土高原石油污染土壤环境因子对金盏菊(Calendula officinalis)-微生物联合修复的响应[J].环境科学学报,2015,35(9).
    [13]王金成,井明博,段春燕,等.石油烃污染对陇东黄土高原土壤生物学及非生物学特性的影响[J].水土保持通报,2017,37(1).
    [14]Shi G,Liu Y,Johnson,N et al.,Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi[J]. Plant and Soil,2014,378(1-2).
    [15]Jean P S. Phytoremediation of soils contaminated by organic compounds:hype,hope and facts[J]. Journal of Soils and Sediments,2017(17).
    [16]李慧,陈冠雄,杨涛,等.沈抚灌区含油污水灌溉对稻田土壤微生物种群及土壤酶活性的影响[J].应用生态学报,2005,16(7):1355-1359.
    [17]王靖,张忠智,苏幼明.石油污染土壤植物修复根际效应研究[J].石油化工高等学校学报,2008,21(2):36-40.
    [18]Tang T C,Wang R G,Niu X W,et al. Enhancement of soil petroleum remediation by using a combination of ryegrass(Lolium perenne)and different microorganisms[J]. Soil&Tillage Research,2009(110):87-93.
    [19]王洪,李海波,孙铁珩,等.生物修复PAHs污染土壤对酶活性的影响[J].生态环境学报,2011,20(4):691-695.
    [20]肖敏,凌婉婷,高彦征,等.丛枝菌根对菲芘污染土壤中几种酶活性的影响[J].农业环境科学学报,2009,28(5):919-924.
    [21]张松林,董庆士,周喜滨,等.人为石油污染土壤紫花首藉田间修复试验[J].兰州大学学报,2008,44(1):47-50.
    [22]Sun W M,Dong Y R,Gao P,et al. Microbial communities inhabiting oil-contaminated soils from two major oilfields in Northern China:Implications for active petroleum-degrading capacity[J]. Journal of Microbiology,2015,53(6):371-378.
    [23]Escobar A L F,Vaca M,López R,et al. Hydrocarbon degradation and lead solubility in a soil polluted with lead and used motor oil treated by composting and phytoremediation[J]. Bulletin of Environmental Contamination and Toxicology,2018(100):280-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700