用户名: 密码: 验证码:
纤维素典型热解产物生成机理研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress in Formation Mechanism of Typical Pyrolysis Products of Cellulose
  • 作者:高子翔 ; 张胜南 ; 易维明
  • 英文作者:GAO Zixiang;ZHANG Shengnan;YI Weiming;School of Agricultural Engineering and Food Science,Shandong University of Technology;Shandong Research Center of Engineering and Technology for Clean Energy;
  • 关键词:纤维素 ; 左旋葡聚糖 ; 左旋葡聚糖酮 ; 5-羟甲基糠醛 ; 同位素标记
  • 英文关键词:cellulose;;levoglucosan;;levoglucosenone;;5-HMF;;isotopic labeling
  • 中文刊名:生物质化学工程
  • 英文刊名:Biomass Chemical Engineering
  • 机构:山东理工大学农业工程与食品科学学院;山东省清洁能源工程技术研究中心;
  • 出版日期:2019-09-30
  • 出版单位:生物质化学工程
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金资助项目(51536009,51276103)
  • 语种:中文;
  • 页:61-70
  • 页数:10
  • CN:32-1768/S
  • ISSN:1673-5854
  • 分类号:TK6
摘要
利用生物质热解来生产液体燃料和高价值化学品受到广泛的关注,对生物质组分热解机理的研究有助于对生物质热解规律的理解和对热解过程的调控。对纤维素热解及其典型热解产物如脱水糖类、呋喃类以及小分子化合物等的生成机理进行综述,并指出后续的研究应该选用合适的模化物;为实现纤维素的高值化利用,还应对纤维素在不同类型催化剂作用下的催化热解机理进行研究。
        It received increasing attentions to adopt the pyrolysis of biomass to produce liquid fuels and value-added chemicals. Study of the pyrolysis mechanism of biomass individual components could provide a better understanding of the biomass pyrolysis and was helpful for the regulation of the pyrolysis process. In this paper, the mechanisms of the cellulose pyrolysis and some typical products formation pathway were reviewed. And that further research should choose the representative model compounds was pointed out and the cellulose pyrolysis mechanism under different kinds of catalysts should be investigated.
引文
[1]BAHNG M,MUKARAKATE C,ROBICHAUD D J,et al.Current technologies for analysis of biomass thermochemical processing:A review[J].Analytica Chimica Acta,2009,651(2):117-138.
    [2]KERSTEN S,GARCIA-PEREZ M.Recent developments in fast pyrolysis of ligno-cellulosic materials[J].Current Opinion in Biotechnology,2013,24(3):414-420.
    [3]BASSILAKIS R,CARANGELO R M,WO M A.TG-FTIR analysis of biomass pyrolysis[J].Fuel,2001,80(12):1765-1786.
    [4]SHAFIZADEH F.Introduction to pyrolysis of biomass[J].Journal of Analytical and Applied Pyrolysis,1982,3(4):283-305.
    [5]HABIBI Y,LUCIA L A,ROJAS O J.Cellulose nanocrystals:Chemistry,self-assembly,and applications[J].Chemical Reviews,2010,110(6):3479-3500.
    [6]WATANABE A,MORITA S,OZAKI Y.Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation analysis[J].Applied Spectroscopy,2006,60(6):611-618.
    [7]WATANABE A,MORITA S,OZAKI Y.Study on temperature-dependent changes in hydrogen bonds in cellulose Iβ by infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation spectroscopy[J].Biomacromolecules,2006,7(11):3164-3170.
    [8]WANG S,DAI G,RU B,et al.Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose[J].Energy,2017,120:864-871.
    [9]YANG H,YAN R,CHEN H,et al.Characteristics of hemicellulose,cellulose and lignin pyrolysis[J].Fuel,2007,86(12/13):1781-1788.
    [10]ZHU G,ZHU X,XIAO Z,et al.Study of cellulose pyrolysis using an in situ visualization technique and thermogravimetric analyzer[J].Journal of Analytical and Applied Pyrolysis,2012,94:126-130.
    [11]XIN S,YANG H,CHEN Y,et al.Chemical structure evolution of char during the pyrolysis of cellulose[J].Journal of Analytical and Applied Pyrolysis,2015,116:263-271.
    [12]BOON J J,PASTOROVA I,BOTTO R E,et al.Structural studies on cellulose pyrolysis and cellulose chars by PyMS,PyGCMS,FTIR,NMR and by wet chemical techniques[J].Biomass and Bioenergy,1994,7:25-32.
    [13]BRADBURY A G W,SAKAI Y,SHAFIZADEH F.A kinetic model for pyrolysis of cellulose[J].Journal of Applied Polymer Science,1979,23(11):3271-3280.
    [14]BOUTIN O,FERRER M,LéDé J.Radiant flash pyrolysis of cellulose:Evidence for the formation of short life time intermediate liquid species[J].Journal of Analytical and Applied Pyrolysis,1998,47(1):13-31.
    [15]刘倩,王树荣,王凯歌,等.纤维素热裂解过程中活性纤维素的生成和演变机理[J].物理化学学报,2008,24(11):1957-1963.
    [16]MATSUOKA S,KAWAMOTO H,SAKA S.Thermal glycosylation and degradation reactions occurring at the reducing ends of cellulose during low-temperature pyrolysis[J].Carbohydrate Research,2011,346(2):272-279.
    [17]MATSUOKA S,KAWAMOTO H,SAKA S.What is active cellulose in pyrolysis?An approach based on reactivity of cellulose reducing end[J].Journal of Analytical and Applied Pyrolysis,2014,106:138-146.
    [18]MATSUOKA S,KAWAMOTO H,SAKA S.Reactivity of cellulose reducing end in pyrolysis as studied by methyl glucoside-impregnation[J].Carbohydrate Research,2016,420:46-50.
    [19]ZHENG M,WANG Z,LI X,et al.Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics[J].Fuel,2016,177:130-141.
    [20]KWON G J,KIM D Y,KIMURA S,et al.Rapid-cooling,continuous-feed pyrolyzer for biomass processing.Preparation of levoglucosan from cellulose and starch[J].Journal of Analytical and Applied Pyrolysis,2007,80(1):1-5.
    [21]PATWARDHAN P R,DALLUGE D L,SHANKS B H,et al.Distinguishing primary and secondary reactions of cellulose pyrolysis[J].Bioresource Technology,2011,102(8):5265-5269.
    [22]PATWARDHAN P R,SATRIO J A,BROWN R C,et al.Product distribution from fast pyrolysis of glucose-based carbohydrates[J].Journal of Analytical and Applied Pyrolysis,2009,86(2):323-330.
    [23]WANG S,GUO X,LIANG T,et al.Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies[J].Bioresource Technology,2012,104:722-728.
    [24]SHEN D K,GU S.The mechanism for thermal decomposition of cellulose and its main products[J].Bioresource Technology,2009,100(24):6496- 6504.
    [25]PONDER G R,RICHARDS G N,STEVENSON T T.Influence of linkage position and orientation in pyrolysis of polysaccharides:A study of several glucans[J].Journal of Analytical and Applied Pyrolysis,1992,22(3):217-229.
    [26]ZHANG X,YANG W,DONG C.Levoglucosan formation mechanisms during cellulose pyrolysis[J].Journal of Analytical and Applied Pyrolysis,2013,104:19-27.
    [27]董晓晨.综纤维素单糖热解生成糠醛与脱水糖衍生物的机理研究[D].北京:华北电力大学,2017.
    [28]AWAD L,DEMANGE R,ZHU Y H,et al.The use of levoglucosenone and isolevoglucosenone as templates for the construction of C-linked disaccharides[J].Carbohydrate Research,2006,341(10):1235-1252.
    [29]FU Q,ARGYROPOULOS D S,TILOTTA D C,et al.Understanding the pyrolysis of CCA-treated wood.Part II.Effect of phosphoric acid[J].Journal of Analytical and Applied Pyrolysis,2008,82(1):140-144.
    [30]CASONI A I,NIEVAS M L,MOYANO E L,et al.Catalytic pyrolysis of cellulose using MCM- 41 type catalysts[J].Applied Catalysis A:General,2016,514:235-240.
    [31]LU Q,YE X M,ZHANG Z B,et al.Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO42-/TiO2-Fe3O4[J].Bioresource Technology,2014,171:10-15.
    [32]WEI X,WANG Z,WU Y,et al.Fast pyrolysis of cellulose with solid acid catalysts for levoglucosenone[J].Journal of Analytical and Applied Pyrolysis,2014,107:150-154.
    [33]ZHANG H,MENG X,LIU C,et al.Selective low-temperature pyrolysis of microcrystalline cellulose to produce levoglucosan and levoglucosenone in a fixed bed reactor[J].Fuel Processing Technology,2017,167:484-490.
    [34]RUTKOWSKI P.Catalytic effects of copper(II) chloride and aluminum chloride on the pyrolytic behavior of cellulose[J].Journal of Analytical and Applied Pyrolysis,2012,98:86-97.
    [35]LU Q,YANG X C,DONG C Q,et al.Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products:Analytical Py-GC/MS study[J].Journal of Analytical and Applied Pyrolysis,2011,92(2):430-438.
    [36]LU Q,ZHANG Y,DONG C Q,et al.The mechanism for the formation of levoglucosenone during pyrolysis of β-D-glucopyranose and cellobiose:A density functional theory study[J].Journal of Analytical and Applied Pyrolysis,2014,110(1):34-43.
    [37]LIN Y,CHO J,TOMPSETT G A,et al.Kinetics and mechanism of cellulose pyrolysis[J].Journal of Physical Chemistry C,2009,113(46):20097-20107.
    [38]MANCINI I,DOSI F,DEFANT A,et al.Upgraded production of (1R,5S)-1-hydroxy-3,6-dioxa-bicyclo[3.2.1]octan-2-one from cellulose catalytic pyrolysis and its detection in bio-oils by spectroscopic methods[J].Journal of Analytical and Applied Pyrolysis,2014,110(1):285-290.
    [39]FABBRI D,TORRI C,BARAVELLI V.Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose:An analytical study[J].Journal of Analytical and Applied Pyrolysis,2007,80(1):24-29.
    [40]SHAFIZADEH F,FURNEAUX R H,STEVENSON T T,et al.Acid-catalyzed pyrolytic synthesis and decomposition of 1,4:3,6-dianhydro-α-D-glucopyranose[J].Carbohydrate Research,1978,61(1):519-528.
    [41]SHAFIZADEH F,FURNEAUX R H,STEVENSON T T,et al.1,5-anhydro- 4-deoxy-D-glycero-hex-1-en-3-ulose and other pyrolysis products of cellulose[J].Carbohydrate Research,1978,67(2):433-447.
    [42]FURNEAUX R H,MASON J M,MILLER I J.A novel hydroxylactone from the lewis acid catalysed pyrolysis of cellulose[J].Journal of the Chemical Society Perkin Transactions,1988,1(1):49-51.
    [43]张阳,陆强,廖航涛,等.葡萄糖热解生成5-羟甲基糠醛机理[J].燃烧科学与技术,2015,21(1):89-95.
    [44]MAYES H B,NOLTE M W,BECKHAM G T,et al.The alpha-bet(a) of glucose pyrolysis:Computational and experimental investigations of 5-hydroxymethylfurfural and levoglucosan formation reveal implications for cellulose pyrolysis[J].ACS Sustainable Chemistry and Engineering,2014,2(6):1461-1473.
    [45]HUANG J,LIU C,WEI S,et al.Density functional theory studies on pyrolysis mechanism of β-D-glucopyranose[J].Journal of Molecular Structure:Theochem,2010,958(1/2/3):64-70.
    [46]ZHANG Y,LIU C,XIE H.Mechanism studies on β-D-glucopyranose pyrolysis by density functional theory methods[J].Journal of Analytical and Applied Pyrolysis,2014,105:23-34.
    [47]PONDER G R,RICHARDS G N.Pyrolysis of inulin,glucose and fructose[J].Carbohydrate Research,1993,244(2):341-359.
    [48]PAINE J B,PITHAWALLA Y B,NAWORAL J D.Carbohydrate pyrolysis mechanisms from isotopic labeling.Part 4.The pyrolysis of D-glucose:The formation of furans[J].Journal of Analytical and Applied Pyrolysis,2008,83(1):37- 63.
    [49]JADHAV H,PEDERSEN C M,S?LLING T,et al.3-deoxy-glucosone is an intermediate in the formation of furfurals from D-glucose[J].ChemSusChem,2011,4(8):1049-1051.
    [50]KATō K.Pyrolysis of cellulose.Part Ⅲ.Comparative studies of the volatile coupounds from pyrolysates of cellulose and its related compounds[J].Agricultural and Biological Chemistry,1967,31(6):657- 663.
    [51]廖艳芬,郭振戈,曹亚文,等.5-羟甲基糠醛热解机理的PY-GC-MS及原位红外法分析[J].华南理工大学学报(自然科学版),2015,43(6):15-21.
    [52]NIKOLOV P Y,YAYLAYAN V A.Thermal decomposition of 5-(hydroxymethyl)-2-furaldehyde(HMF) and its further transformations in the presence of glycine[J].Journal of Agricultural and Food Chemistry,2011,59(18):10104-10113.
    [53]WANG M,LIU C,XU X,et al.Theoretical investigation on the carbon sources and orientations of the aldehyde group of furfural in the pyrolysis of glucose[J].Journal of Analytical and Applied Pyrolysis,2016,120:464-473.
    [54]PAINE J B,PITHAWALLA Y B,NAWORAL J D,et al.Carbohydrate pyrolysis mechanisms from isotopic labeling.Part 1:The pyrolysis of glycerin:Discovery of competing fragmentation mechanisms affording acetaldehyde and formaldehyde and the implications for carbohydrate pyrolysis[J].Journal of Analytical and Applied Pyrolysis,2007,80(2):297-311.
    [55]PAINE J B,PITHAWALLA Y B,NAWORAL J D.Carbohydrate pyrolysis mechanisms from isotopic labeling.Part 2.The pyrolysis of D-glucose:General disconnective analysis and the formation of C1 and C2 carbonyl compounds by electrocyclic fragmentation mechanisms[J].Journal of Analytical and Applied Pyrolysis,2008,82(1):10-41.
    [56]PAINE J B,PITHAWALLA Y B,NAWORAL J D.Carbohydrate pyrolysis mechanisms from isotopic labeling.Part 3.The pyrolysis of D-glucose:Formation of C3 and C4 carbonyl compounds and a cyclopentenedione isomer by electrocyclic fragmentation mechanisms[J].Journal of Analytical and Applied Pyrolysis,2008,82(1):42- 69.
    [57]ZHANG M,GENG Z,YU Y.Density functional theory(DFT) study on the pyrolysis of cellulose:The pyran ring breaking mechanism[J].Computational and Theoretical Chemistry,2015,1067:13-23.
    [58]MATSUOKA S,KAWAMOTO H,SAKA S.Retro-aldol-type fragmentation of reducing sugars preferentially occurring in polyether at high temperature:Role of the ether oxygen as a base catalyst[J].Journal of Analytical and Applied Pyrolysis,2012,93:24-32.
    [59]SHAFIZADEH F,LAI Y Z.Thermal degradation of 1,6-anhydro-β-D-glucopyranose[J].Journal of Organic Chemistry,1972,37(2):278-284.
    [60]HEYNS K,KLIER M.Br?unungsreaktionen und fragmentierungen von kohlenhydraten:Teil IV.Vergleich der flüchtigen abbauprodukte bei der pyrolyse von mono-,oligo- und polysacchariden[J].Carbohydrate Research,1968,6(4):436-448.
    [61]LU Q,TIAN H Y,HU B,et al.Pyrolysis mechanism of holocellulose-based monosaccharides:The formation of hydroxyacetaldehyde[J].Journal of Analytical and Applied Pyrolysis,2016,120:15-26.
    [62]PONDER G R,RICHARDS G N.Pyrolysis of some 13C-labeled glucans:A mechanistic study[J].Carbohydrate Research,1993,244(1):27-47.
    [63]HOUMINER Y,PATAI S.Pyrolytic reactions of carbohydrates.Part II.Thermal decomposition of D-glucose[J].Israel Journal of Chemistry,1969,7:513-524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700