用户名: 密码: 验证码:
水介质中微气泡臭氧化处理高浓度甲苯气体
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-concentration toluene gas treatment by microbubble ozonation in water medium
  • 作者:刘春 ; 庞晓克 ; 高立涛 ; 张静 ; 陈晓轩 ; 张磊 ; 张瑞娜
  • 英文作者:LIU Chun;PANG Xiaoke;GAO Litao;ZHANG Jing;CHEN Xiaoxuan;ZHANG Lei;ZHANG Ruina;School of Environmental Science and Engineering, Hebei University of Science and Technology;Pollution Prevention Biotechnology Laboratory of Hebei Province;
  • 关键词:挥发性有机物处理技术 ; 甲苯气体 ; 微气泡臭氧化 ; 水反应介质
  • 英文关键词:VOC treatment technology;;toluene gas;;microbubble ozonation;;water medium for reaction
  • 中文刊名:环境工程学报
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:河北科技大学环境科学与工程学院;河北省污染防治生物技术重点实验室;
  • 出版日期:2019-01-26
  • 出版单位:环境工程学报
  • 年:2019
  • 期:01
  • 基金:河北科技大学科学治霾及大气污染防治重点攻关预研专项课题
  • 语种:中文;
  • 页:122-130
  • 页数:9
  • CN:11-5591/X
  • ISSN:1673-9108
  • 分类号:X701
摘要
高浓度挥发性有机物(VOC)气体高效处理技术是大气污染控制领域关注的重点。采用微气泡臭氧化在水介质中通过吸收-氧化过程对高浓度甲苯气体进行处理,考察微气泡臭氧化强化甲苯吸收-氧化去除性能、机理以及水介质pH对该工艺处理效果的影响。结果表明,微气泡能够强化甲苯气体在水介质中的吸收过程,氮气/甲苯微气泡在水介质中的甲苯去除率和吸收量均显著高于氮气/甲苯传统气泡,同时氮气/甲苯微气泡通过产生·OH氧化反应,使得平均甲苯氧化矿化率达到40.97%。微气泡臭氧化在水介质中对甲苯气体具有更高效的去除性能,臭氧/甲苯微气泡处理中甲苯平均去除率为97.08%,甲苯可被完全矿化而几乎无中间产物积累,其平均氧化矿化率为88.56%、平均臭氧利用率为82.54%、臭氧投加量与甲苯矿化量比值为1.26,处理性能显著优于臭氧/甲苯传统气泡处理。水介质pH对臭氧/甲苯微气泡处理甲苯气体具有一定影响,不同pH条件下甲苯气体去除率基本相当,但中性条件下甲苯氧化矿化率最高;碱性和酸性条件下甲苯氧化矿化率有所下降。微气泡臭氧化为高浓度VOC气体高效处理提供了新的解决途径。
        The effective technology for high concentration volatile organic compound(VOC) gas treatment is a focusof air pollution control. The microbubble ozonation was used to treat high concentration toluene gas in water mediumthrough absorption-oxidation process. The performance and mechanism of toluene removal through an enhancedabsorption-oxidation process with microbubble ozonation, as well as the effect of water medium p H, were studied. Theresults showed that microbubbles could enhance absorption process of toluene gas in water medium. The removalefficiency and absorption amount of toluene in water medium using nitrogen/toluene microbubbles were much higherthan those using nitrogen/toluene conventional bubbles. In addition, ·OH oxidation occurred when using nitrogen/toluene microbubbles, which resulted in an average oxidation mineralization efficiency of 40.97% for toluene. Thehigher efficient removal of toluene gas was achieved with microbubble ozonation in water medium. In this case, theaverage toluene removal efficiency using ozone/toluene microbubbles was 97.08%.The toluene could be mineralizedcompletely without intermediate product accumulation. The average toluene oxidation mineralization efficiency was 88.56% and the average ozone utilization efficiency was 82.54%. The ratio of ozone dosage to toluene mineralizationamount was 1.26. The removal performance of toluene gas using ozone/toluene microbubbles was much better thanthat using ozone/toluene conventional bubbles. The p H of water medium had some effects on the toluene gastreatment with microbubble ozonation. The toluene removal efficiency was almost same at different p Hs of watermedium. However, the toluene oxidation mineralization efficiency reached maximum under neutral p H, and presenteda little decrease under alkaline and acid conditions. Microbubble ozonation provides a new solution for an efficienttreatment of high concentration VOC gas.
引文
[1]BERENJIAN A,CHAN N,MALMIRI H J.Volatile organic compounds removal methods:A review[J].American Journal of Biochemistry and Biotechnology,2012,4(8):220-229.
    [2]席劲瑛,武俊良,胡洪营,等.工业VOCs气体处理技术应用状况调查分析[J].中国环境科学,2012,32(11):1955-1960.
    [3]栾志强,郝郑平,王喜芹.工业固定源VOCs治理技术分析评估[J].环境科学,2011,32(12):3476-3486.
    [4]黄海凤,宁星杰,蒋孝佳,等.V-M/TiO2(M=Cu、Cr、Ce、Mn、Mo)催化燃烧含氯有机废气[J].中国环科学,2014,34(9):2179-2185.
    [5]黄学敏,乔南利,曹利,等.Cux Ce(1-x)O2/γ-Al2O3催化剂催化燃烧甲苯性能的研究[J].环境科学学报,2012,32(5):1177-1182.
    [6]GUPTA K N,RAO N J,AGARWAL G K.Gaseous phase adsorption of volatile organic compounds on granular activated carbon[J].Chemical Engineering Communications,2015,202(3):384-401.
    [7]BAUR G B,BESWICK O,SPRING J,et al.Activated carbon fibers for efficient VOC removal from diluted streams:The role of surface functionalities[J].Adsorption,2015,21(4):255-264.
    [8]SPIGNO G,PAGELLA C,FUMI M D,et al.VOCs removal from waste gases:Gas-phase bioreactor for the abatement of hexane by Aspergillus niger[J].Chemical Engineering Science,2003,58(3):739-746.
    [9]GUIEYSSE B,HORT C,PLATEL V,et al.Biological treatment of indoor air for VOC removal:Potential and challenges[J].Biotechnology Advances,2008,26(5):398-410.
    [10]KWONG C W,CHAO C Y H,HUI K S,et al.Removal of VOCs from indoor environment by ozonation over different porous materials[J].Atmospheric Environment,2008,42(10):2300-2311.
    [11]BRODU N,ZAITAN H,MANERO M H,et al.Removal of volatile organic compounds by heterogeneous ozonation on microporous synthetic alumina silicate[J].Water Science and Technology,2012,66(9):2020-2026.
    [12]IKHLAQ A,KASPRZYK-HORDERN B.Catalytic ozonation of chlorinated VOCs on ZSM-5 zeolites and alumina:Formation of chlorides[J].Applied Catalysis B:Environmental,2017,200(1):274-282.
    [13]ZHONG L,HAGHIGHAT F.Ozonation air purification technology in HVAC applications[J].Ashrae Transactions,2014,120(1):1-8.
    [14]MOUSSAVI G R,KHAVANIN A,MOKARAMI H.Removal of xylene from waste air stream using catalytic ozonation process[J].Iranian Journal of Health and Environment,2010,3(3):239-250.
    [15]STOYANOVA M,KONOVA P,NIKOLOV P,et al.Alumina-supported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs[J].Chemical Engineering Journal,2006,122(1):41-46.
    [16]CHU L B,XING X H,YU A F,et al.Enhanced ozonation of simulated dyestuff wastewater by microbubbles[J].Chemosphere,2007,68(10):1854-1860.
    [17]张静,杜亚威,刘晓静,等.臭氧微气泡处理酸性大红3R废水特性研究[J].环境科学,2015,36(2):584-589.
    [18]曹原原.炼油厂废气的排放与防治[J].中外能源,2018,23(4):91-97.
    [19]BADER H,HOIGNéJ.Determination of ozone in water by the indigo method[J].Water Research,1981,15(4):449-456.
    [20]宋仁元,张亚杰,王唯一,等.水和废水标准检验法[M].北京:中国建筑工业出版社,1985:368-370.
    [21]任源,韦朝海,吴超飞,等.生物流化床A/O2工艺处理焦化废水过程中有机组分的GC/MS分析[J].环境科学学报,2006,26(11):1785-1791.
    [22]TAKAHASHI M,CHIBA K,LI P.Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J].Journal of Physical Chemistry B,2007,111(6):1343-1347.
    [23]LI P,TAKAHASHI M,CHIBA K.Degradation of phenol by the collapse of microbubbles[J].Chemosphere,2009,75(10):1371-1375.
    [24]KHUNTIA S,MAJUMDER S K,GHOSH P.Quantitative prediction of generation of hydroxyl radicals from ozone microbubbles[J].Chemical Engineering Research and Design,2015,98(6):231-239.
    [25]SHAHIDI D,ROY R,AZZOUZ A.Advances in catalytic oxidation of organic pollutants-prospects for thorough mineralization by natural clay catalysts[J].Applied Catalysis B:Environmental,2015,174-175(21):277-292.
    [26]STAEHELIN J,HOIGNéJ.Decomposition of ozone in water:Rate of initiation by hydroxide ions and hydrogen peroxide[J].Environmental Science and Technology,1982,16(10):676-681.
    [27]CHOI K,BAE S,LEE W.Degradation of off-gas toluene in continuous pyrite Fenton system[J].Journal of Hazardous Materials,2014,280(4):31-37.
    [28]TAKAHASHI M.ζpotential of microbubbles in aqueous solutions:Electrical properties of the gas-water interface[J].Journal of Physical Chemistry B,2005,109(46):21858-21864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700