用户名: 密码: 验证码:
我国主要海域海水养殖碳汇能力评估及其影响效应——基于我国9个沿海省份面板数据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of carbon dioxide capacity and the effects of decomposition and spatio-temporal differentiation of seawater in China′s main sea area based on panel data from 9 coastal provinces in China
  • 作者:邵桂兰 ; 刘冰 ; 李晨
  • 英文作者:SHAO Guilan;LIU Bing;LI Chen;School of Economics, Ocean University of China;Institute of Marine development Ocean University of China;
  • 关键词:海水养殖 ; 碳汇能力 ; 碳汇转化比 ; 主要海域 ; LMDI
  • 英文关键词:mariculture;;carbon sink capacity;;carbon sink efficiency;;main sea area;;LMDI
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国海洋大学经济学院;中国海洋大学海洋发展研究院;
  • 出版日期:2019-01-10 09:11
  • 出版单位:生态学报
  • 年:2019
  • 期:07
  • 基金:山东省自科基金(ZR2016GQ05);; 国家社科基金(11BJY064);; 山东省社科基金(18CSJJ01)
  • 语种:中文;
  • 页:352-363
  • 页数:12
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:X714
摘要
随着海水养殖业的碳汇功能逐渐被认识和肯定,海水养殖不再单是一项经济活动,而是对环境具有正向影响的碳汇生态活动。以我国沿海9个省份为例,选取海水养殖业碳汇主要贡献的贝类和藻类海产品,并按照各自的碳汇方式对我国沿海地区2008—2015年海水养殖碳汇能力测算,进一步将9个沿海省份按照主要海域划分为渤海、黄海、东海、南海,利用LMDI模型从海水养殖的结构效应和规模效应角度分析碳汇能力的区域差异和主要影响因素。研究结果显示,黄海沿岸海水养殖碳汇能力最强,南海沿岸海水养殖的碳汇转化比例最高,规模效应与我国沿海地区海水养殖碳汇能力始终呈正相关,结构效应的作用显著但不稳定。基于上述结论,我国沿海地区碳汇养殖业应首先提升碳汇养殖技术、稳定海水养殖产量,其次注重优化养殖结构,对碳汇潜力巨大的贝类多加关注。
        The function of carbon sinks in marine aquaculture have been gradually recognized and affirmed; therefore, marine aquaculture is no longer merely an economic activity, but a positive carbon ecological activity. This research focused on fishery carbon sinks as a main process for transferring carbon from aquatic products during harvest. According to the data of marine aquaculture production in the coastal areas of the China Fishery Yearbook, we studied 9 coastal provinces of China and selected the major species of shellfish and algae for this study. Dry and wet weight carbon coefficients of the selected marine products were obtained from reported values in the literature; then we combined those values with the yield data to obtain the mariculture carbon sinks of different biological species in the coastal provinces of China. Since there is a relationship among carbon sinks, a carbon sink coefficient and the yield of different species, we measured the annual carbon sequestration capacity of aquaculture seawater in the coastal areas of China from 2008 to 2015. Furthermore, we divided the coastal provinces into different sea areas to compare the carbon sink capacity and carbon sink conversion ratio of the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea. Finally, from the perspective of the structural effects and scale effects of marine aquaculture carbon sinks, we identified the main factors that affect the carbon sink potential of coastal areas in China using an LMDI model. The potential for carbon sinks in the different sea areas were comprehensively evaluated. The results showed that since 2008 the amount of carbon in China′s marine aquaculture industry has exceeded 1.05 million tons. The carbon sink conversion ratio and carbon sink capacity of coastal provinces has increased over the years, indicating that the carbon sink capacity of China′s marine aquaculture industry cannot be neglected. Shellfish can significantly increase the carbon sink conversion ratio; therefore, the carbon sink conversion ratio of the South China Sea was the highest and had the best culture structure of the 4 sea areas, and that of the East China Sea was the lowest. The conversion ratio of carbon sinks along the Bohai Sea and the Yellow Sea coast were similar. From the time dimension, the carbon sink conversion ratio in the South China Sea was stable, while the East China Sea had a significant downward trend of carbon sink conversion ratio due to its aquaculture structure, which is biased towards algae. The carbon sink capacity of each sea area has increased over time, with the highest in the Yellow Sea and the lowest in the Bohai Sea before 2012 and the lowest in the South China Sea after 2012. The gap among the different sea areas has increased each year. An LMDI method compared the effects of aquaculture structure and the scale effect on the carbon sink capacity of China′s marine aquaculture industry. It was found that the scale effects of each sea area were always positive, while the structural effect were sometimes significantly negative. In some years, the changes in aquaculture structure inhibited the carbon sinks, indicating that the structural effects were more significant but unstable. Based on the above conclusions, China′s coastal carbon sequestration industry should improve carbon sink technology and stabilize marine aquaculture production, followed by optimizing the aquaculture structure and paying more attention to shellfish with large carbon sink potential.
引文
[1] The Kyoto Protocol.Third meeting of participating countries of the United Nations Framework Convention on Climate Change,1997.
    [2] Khatiwala S,Primeau F,Hall T.Reconstruction of the history of anthropogenic CO2 concentrations in the ocean.Nature,2009,462(7271):346- 349.
    [3] SCEP.Man′s Impact on the Global Environment:Assessment and Recommendations for Action.Cambridge:MIT Press,1970.
    [4] Woodwell G M,Pecan E V.Carbon and the Biosphere:Proceedings of the 24th Brookhaven Symposium in Biology,Upton,New York,May 16—18,1972.Washington:Technical Information Center,Office of Information Services,U.S.Atomic Energy Commission,1973.
    [5] Bolin B.Changes of land biota and their importance for the carbon cycle.Science,1977,196(4290):613- 615.
    [6] Hadden D,Grelle A.Changing temperature response of respiration turns boreal forest from carbon sink into carbon source.Agricultural and Forest Meteorology,2016,223:30- 38.
    [7] Frankignoulle M,Pichon M,Gattuso J P.Aquatic Calcification as a Source of Carbon Dioxide,Carbon Sequestration in the Biosphere.Springer Berlin Heidelberg,1995:266- 271.
    [8] 陈建芳,金海燕,李宏亮,张海生,季仲强,庄燕培.北极快速变化对北冰洋碳汇机制和过程的影响.科学通报,2015,35:3406- 3416.
    [9] 唐启升.碳汇渔业与又好又快发展现代渔业.江西水产科技,2011,(2):5- 7.
    [10] 张继红,方建光,唐启升.中国浅海贝藻养殖对海洋碳循环的贡献.地球科学进展,2005,20(3):359- 365.
    [11] Tang Q S,Zhang J H,Fang J G.Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystems.Marine Ecology Progress Series,2011,424:97- 104.
    [12] 权伟,应苗苗,康华靖,周庆澔,许曹鲁.浙江近海贝类养殖及其碳汇强度研究.渔业现代化,2014,41(5):35- 38.
    [13] 董双林.高效低碳——中国水产养殖业发展的必由之路.水产学报,2011,35(10):1595- 1600.
    [14] 郭成秀,张士华,刘志国.东营市生态渔业建设与“碳汇”渔业模式的选择//华东地区农学会、山东农学会2010年学术年会交流材料.东营:华东地区农学会,山东农学会,2010.
    [15] 齐占会,王珺,黄洪辉,刘永,李纯厚,陈胜军,孙鹏.广东省海水养殖贝藻类碳汇潜力评估.南方水产科学,2012,8(1):30- 35.
    [16] 纪建悦,王萍萍.我国海水养殖业碳汇能力测度及其影响因素分解研究.海洋环境科学,2015,34(6):871- 878.
    [17] 马述忠,陈颖.进出口贸易对中国隐含碳排放量的影响:2000- 2009年——基于国内消费视角的单区域投入产出模型分析.财贸经济,2010,(12):82- 89.
    [18] 农业部渔业渔政管理局.2016中国渔业年鉴.北京:中国农业出版社,2016.
    [19] 孙吉亭,赵玉杰.我国碳汇渔业发展模式研究.东岳论丛,2011,32(8):150- 155.
    [20] 陈中祥,牟振波.滤食性鱼类在淡水渔业中的碳汇作用初探.水产学杂志,2011,24(3):65- 68.
    [21] 刘国才,李德尚,董双林,陈兆波,卢静.对虾综合养殖生态系有机碳的平衡.海洋学报,2002,24(6):84- 91.
    [22] 赵林,殷鸣放,陈晓非,王大奇.森林碳汇研究的计量方法及研究现状综述.西北林学院学报,2008,23(1):59- 63.
    [23] 卢振彬,黄美珍.福建近海主要经济渔业生物营养级和有机碳含量研究.台湾海峡,2004,23(2):153- 158.
    [24] 张继红.滤食性贝类养殖活动对海域生态系统的影响及生态容量评估.北京:中国科学院研究生院,2008.
    [25] 柯爱英,罗振玲,薛峰,张石天,孙庆海,陈坚.2004~2014年温州市养殖贝类碳汇强度研究.水产科技情报,2016,43(3):155- 159.
    [26] 蔡英亚,张英,魏若飞.贝类学概论(第二版).上海:上海科学技术出版社,1995.
    [27] 曾呈奎,毕列爵.藻类名词及名称(第二版).北京:科学出版社,2005.
    [28] 林碧琴,姜彬慧.藻类与环境保护.沈阳:辽宁民族出版社,1999.
    [29] 张忠潮,齐丛飞.对我国海洋环境现状的思考.现代商业,2009,(2):135- 138.
    [30] 李纯厚,齐占会,黄洪辉,刘永,孔啸兰,肖雅元.海洋碳汇研究进展及南海碳汇渔业发展方向探讨.南方水产,2010,6(6):81- 86.
    [31] Mueller K,Cao L,Caldeira K,Jain A.Differing methods of accounting ocean carbon sequestration efficiency.Journal of Geophysical Research,2004,109(C12):C12018.
    [32] 张先基.基于XRF测碳技术的中国海水贝类养殖碳汇研究.大连:辽宁师范大学,2013.
    [33] 刘慧,唐启升.国际海洋生物碳汇研究进展.中国水产科学,2011,18(3):695- 702.
    [34] Brown T E,Richardson F L.The effect of growth environment on the physiology of algae:light intensity.Journal of Phycology,1968,4(1):38- 54.
    [35] Albrecht J,Fran?ois D,Schoors K.A Shapley decomposition of carbon emissions without residuals.Energy Policy,2002,30(9):727- 736.
    [36] Ang B W.LMDI decomposition approach:a guide for implementation.Energy Policy,2015,86:233- 238.
    [37] 许国栋,王萍萍,纪建悦,慕永通.基于LMDI方法的海水养殖贝类碳汇分解研究——山东省2008- 2012年的经验数据.中国渔业经济,2015,33(1):71- 76.
    [38] 邵桂兰,孔海峥,于谨凯,李晨.基于LMDI法的我国海洋渔业碳排放驱动因素分解研究.农业技术经济,2015,(6):119- 128.
    [39] 郭朝先.中国碳排放因素分解:基于LMDI分解技术.中国人口·资源与环境,2010,20(12):4- 9.
    [40] 于雪霞.碳生产率视角下经济增长与低碳进程的协调发展研究——基于24个碳排放大国的实证分析.科技管理研究,2016,36(10):256- 260,266- 266.
    [41] 佘远安,孙昭宁.渔业的碳汇功能及发展渔业碳汇路径初探.中国水产,2010,(9):23- 24.
    [42] 邵桂兰,阮文婧.我国碳汇渔业发展对策研究.中国渔业经济,2012,30(4):45- 52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700