用户名: 密码: 验证码:
页岩油的资源潜力及流动性评价方法——以西加拿大盆地上泥盆统Duvernay页岩为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Shale oil resource potential and its mobility assessment:A case study of Upper Devonian Duvernay shale in Western Canada Sedimentary Basin
  • 作者:谌卓恒 ; 黎茂稳 ; 姜春庆 ; 钱门辉
  • 英文作者:Chen Zhuoheng;Li Maowen;Jiang Chunqing;Qian Menhui;Geological Survey of Canada;Petroleum Exploration and Production Research Institute,SINOPEC;
  • 关键词:资源评价 ; 赋存状态 ; 可动性 ; 热解数据 ; 轻烃损失校正 ; 页岩油 ; Duvernay页岩 ; 西加拿大盆地
  • 英文关键词:resource assessment;;state of occurrence;;mobility;;Rock-Eval pyrolysis data;;correction of light hydrocarbon loss;;shale oil;;Duvernay shale;;Western Canada Sedimentary Basin
  • 中文刊名:石油与天然气地质
  • 英文刊名:Oil & Gas Geology
  • 机构:加拿大联邦地质调查局;中国石化石油勘探开发研究院;
  • 出版日期:2019-04-16 17:35
  • 出版单位:石油与天然气地质
  • 年:2019
  • 期:03
  • 基金:Geoscience for new energy supply;Program of energy research & development
  • 语种:中文;
  • 页:13-22
  • 页数:10
  • CN:11-4820/TE
  • ISSN:0253-9985
  • 分类号:P618.13
摘要
页岩油储层集生储盖为一体,具双孔结构,以纳米孔隙为主,储层中油气的流动性是资源商业成功开发的关键地质因素之一。基于常规储层体积法的页岩油资源评价方法受制于单一基质孔隙结构模型,无法依油气在储层中的赋存状态分类评价,不能为资源开发决策提供与油气流动性相关的信息。页岩油的赋存状态主要受烃源岩成熟度和类型控制。Rock-Eval热解数据含大量与烃源岩类型和成熟度相关信息,结合已知页岩油田的生产数据,我们提出根据页岩油赋存状态的分类评价,并在此基础上将油气资源划分为不可动(吸附),受限和可动三种资源类型,以此定量描述页岩油气资源的流动性。文章以加拿大西部盆地上泥盆统Duvernay页岩油田的生产和储层资料为基础,建立资源评价所需页岩油藏参数与热解参数之间的经验模型,采用石油地层体积因子恢复热解样品取样过程中的轻烃损失,并以8-32-46-9W5井Duvernay页岩油气资源单井评价为例,介绍方法的基本原理及其应用。以该井为中心的区块单元内资源量评价结果经10%的采收率折扣后,与邻区按实际生产数据用产量递减方法计算出的结果一致。说明本文提出的基于热解数据和生烃动力学模型的页岩油资源评价方法可行。
        Shale oil reservoir is a source-reservoir-caprock integration characterized by dual-porosity with nano-pores being dominant. Oil mobility in the reservoir is one of the key geological factors for the commercial resource development with success. Shale oil resource evaluation method based on conventional reservoir volumetric approach is subject to the pore structure of simple matrix and not applicable to assess the resources according to their states of occurrence in reservoir. As such it cannot provide adequate information with respect to oil and gas mobility for making resource development decisions. The state of occurrence of shale oil and gas is primarily controlled by the maturity and types of source rocks,and Rock-Eval pyrolysis data contain critical information related to source rock types and maturity. According to the states of oil occurrence in shale reservoir,the oil and gas resources are divided into three categories: non-movable( adsorbed),restricted,and movable resources,to quantitatively describe the mobility of oil and gas in shale reservoir. Combined with the production and reservoir data from the Upper Devonian Duvernay shale oil field in the Western Canada Sedimentary Basin,empirical models are established for assessing resources in terms of shale oil reservoir parameters and pyrolysis data,and then oil formation volume factor is used to estimate the evaporative loss of light hydrocarbons for pyrolysis parameter( S1) during coring and sampling. A single well evaluation of Duvernay shale oil and gas resource potential in Well 8-32-46-9 W5 is taken as an example to introduce the principles and demonstrate the application of the proposed method in shale oil resource assessment. The resource potential of the block with Well 8-32-46-9 W5 as its core calculated by this method and with 10% recovery discounted,is consistent with the result derived from production decline model based on actual production data in adjacent areas,which demonstrates that the shale oil resource assessment method proposed here based on pyrolysis data and hydrocarbon generation kinetics model is feasible.
引文
[1] Jarvie D M. Petroleum Systems in the Permian Basin:Targeting optimum oil production. TCU Energy Institute Presentation. 2018,https://www. hgs. org/sites/default/files/Jarvie%20Permian%20basin%2C%20HGS%2024%20January%202018%20wo%20background.pdf
    [2]杨智,邹才能.“进源找油”:源岩油气内涵与前景[J].石油勘探与开发,2019,46(1):1-12.Yang Zhi,Zou Caineng.“Exploring petroleum inside source kitchen”:Connotation and prospects of source rock oil and gas[J]. Petroleum Exploration and Development. 2019,46(1):173-184.
    [3]王勇,王学军,宋国奇,等.渤海湾盆地济阳坳陷泥页岩岩相与页岩油富集关系[J].石油勘探与开发,2016,43(5):696-704.Wang Yong,Wang Xxuejun,Song Guoqi,et al. Enetic connection between mud shale lithofacies and shale oil enrichment in Jiyang Depression,Bohai Bay Basin[J]. Petroleum Exploration and Development,2016,43(5):696-704.
    [4] Jarvie D M. Shale resource systems for oil and gas:part 2—shale-oil resource systems[C]//Breyer J A. Shale reservoirs—giant resources for the 21st Century:AAPG Memoir 97,2012:89-119.
    [5] Cander H. Finding sweet spots in shale liquids and gas plays:(with Lessons from the Eagle Ford Shale). Search and Discovery Article#41093(2012/2013),Posted May 13,2013. http://www. searchanddiscovery. com/documents/2013/41093cander/ndx_cander. pdf.
    [6] Akkutlu I Y,Baek S,Olorode O M,et al. Shale resource assessment in presence of Nanopore confinement,URTEC-2670808-MS//Unconventional Resources Technology Conference[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference,24-26 July,Austin,Texas,USA,2017. https://doi. org/10. 15530/URTEC-2017-2670808.
    [7]蒋启贵,黎茂稳,钱门辉,等.不同赋存状态页岩油定量表征技术与应用研究[J],石油实验地质,2016,38(6):842-849.Jiang Qigui,Li Maowen,Qian Menhui,et al. Quantitative characterization of shale oil in different occurrence state and its application[J]. Petroleum Geology and Experiments,2016,38(6):842-849.
    [8]李志明,钱门辉,黎茂稳,等.中-低熟湖相富有机质泥页岩含油性及赋存形式,以渤海湾盆地渤南洼陷罗63井及河21井沙河街组一段为例[J].石油与天然气地质,2017,38(3):448-456.Li Zhiming,Qian Menhui,Li Maowen,et al. Oil content and occurrences in low-medium mature lacustrine shales:one case from the 1st Member of Eocence-Oligocene Shehejie Formation in wells Luo-68and Yi-21,Bonansubsag,Bohai Bay Basin,China[J]. Oil&Gas Geology,2017,38(3):448-456.
    [9] Abrams M A,Gong C,Garnier C,et al. A new thermal extraction protocol to evaluate liquid rich unconventional oil in place and in-situ fluid chemistry[J]. Marine and Petroleum Geology,2017. 88:659-675.
    [10] Wang L,Parsa E,Gao Y,et al. Experimental study and modeling of the effect of nano-confinement on hydrocarbon phase behaviour in unconventional reservoirs[J]. SPE,2014,169581-MS.
    [11]王森,冯其红,查明,等.页岩有机质缝内液态烃赋存状态分子动力学模拟[J].石油勘探与开发,2015,42(6):772-778.Wang Seng,Feng Qihong,Zha Ming,et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter[J]. Petroleum Exploration and Development 2015,42(6):772-778.
    [12] Whitson C H,Sunjerga S. PVT in Liquid-Rich Shale Reservoirs[J].SPE,2012,SPE-155499.
    [13] Han Y,Horsfield B,Wirth R,et al. Oil retention and porosity evolution in organic-rich shales[J]. AAPG Bulletin,2017,101,807-827.
    [14] Passey Q R,Bohacs K M,Esch W L,et al. From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale-gas reservoirs[J]. SPE2010,131350.
    [15] Bohacs K M,Passey Q R,Rudnicki M,et al. The spectrum of finegrained reservoirs from“shale gas”to“shale oil”/tight liquids:Essential attributes,key controls,practical characterization[C]//IPTC-16676,2013,1-16.
    [16] Behar F,Beaumont V,H L De B Penteado. Rock-Eval 6 technology:performances and development[J]. Oil&Gas Science and Technology,2002. 56(2):111-134.
    [17] Chen Z,Li M,Ma X,Cao T,et al. Generation kinetics based method for correcting effects of migrated oil on Rock-Eval data-an example from the Eocene Qianjiang Formation,Jianghan Basin,China,International[J]. Journal of Coal Geology,2018,195(1):84-101.
    [18] Michael G E,Packwood J,Holba A. Determination of in-situ hydrocarbon volumes in liquid rich shale plays[C]//Unconventional Resources Technology Conference,Denver,Colorado,USA,2013,8.
    [19] Chen J,Pang X,Pang H,et al. Hydrocarbon evaporative loss evaluation of lacustrine shale oil based on mass balance method:Permian Lucaogou Formation in Jimusaer Depression,Junggar Basin[J]. Marine and Petroleum Geology,2018,91:422-431.
    [20] Jarvie D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta,2014,12(12):307-325.
    [21] Jiang C,Z Chen,Mort A,et al. Hydrocarbon evaporative loss from shale core samples as revealed by Rock-Eval and thermal desorptiongas chromatography analysis:Its geochemical and geological implications[J]. Marine and Petroleum Geology,2016,70:294-303.
    [22] Li M,Chen Z,Ma X,et al. A numerical method for calculating total oil yield using a single routine rock-evalpyrogram,a case study of the Eocene Shahejie Formation in Dongying Depression,Bohai Bay Basin,China[J]. International Journal of Coal Geology,2018,191:49-65.
    [23] Han Y,Mahlstedt N,Horsfield B. The Barnett Shale:Compositional fractionation associated with intraformational petroleum migration,retention,and expulsion[J]. AAPG Bulletin,2015,99:2173-2202.
    [24] Creaney S,Allan J,Cole K S,et al. Petroleum generation and migration in the Western Canada Sedimentary Basin[C]//Mossop G D,Shetsen I. Geological Atlas of the Western Canada Sedimentary Basin[M]. Alberta,1994.
    [25] A comprehensive analysis of Alberta’s Foremost liquids-rich shale resource[D]. Duvernay Reserves and Resources Report,AER,2016.https://www. aer. ca/documents/reports/DuvernayReserves_2016.pdf.
    [26] Macedo R. DuvernayWell encouraging for Encana[J]. Daily Oil Bulletin,2013,4(24). www. dailyoilbulletin. com/headlines/2013-04-24/#axzz3xdfddAum.
    [27] Chen Z,Jiang C. A revised method for organic porosity estimation using Rock-Eval pyrolysis data,example from Duvernay Shale in the Western Canada Sedimentary Basin[J]. AAPG Bulletin. 2016,100(3):405-422. DOI:10. 1306/08261514173.
    [28] Duvernay resource assessment energy briefing note[D]. NEB,2017,https://www. neb-one. gc. ca/nrg/sttstc/crdlndptrlmprdct/rprt/2017dvrn/index-eng. html.
    [29] Petro Wiki,2018,Oil Formation Factor. https://petrowiki. org/Oil_formation_volume_factor.
    [30] Jiang C,Obermajer,Su A,et al. Rock-Eval/TOC analysis of selected core samples of the Devonian Duvernay Formation from the Western Canada Sedimentary Basin,Alberta[D]. Geological Survey of Canada Open File 8155,532. https://doi. org/10. 4095/299332

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700