用户名: 密码: 验证码:
水库温室气体净通量评估模型(G-res Tool)及在长江上游典型水库初步应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The net GHG flux assessment model of reservoir(G-res Tool) and its application in reservoirs in upper reaches of Yangtze River in China
  • 作者:张斌 ; 李哲 ; 李翀 ; 陈永柏 ; 郭劲松
  • 英文作者:ZHANG Bin;LI Zhe;LI Chong;CHEN Yongbo;GUO Jinsong;Key Laboratory of Reservoir Enviroment,Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;China Three Gorges Corporation;Chongqing University;
  • 关键词:水库 ; 温室气体 ; 净通量 ; 模型 ; 评估 ; 长江上游
  • 英文关键词:Reservoir;;greenhouse gas;;net flux;;model;;estimation;;upper reaches of Yangtze River
  • 中文刊名:湖泊科学
  • 英文刊名:Journal of Lake Sciences
  • 机构:中国科学院重庆绿色智能技术研究院中国科学院水库水环境重点实验室;中国科学院大学;中国长江三峡集团公司;重庆大学;
  • 出版日期:2019-09-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金项目(51861125204,51679226)资助
  • 语种:中文;
  • 页:291-300
  • 页数:10
  • CN:32-1331/P
  • ISSN:1003-5427
  • 分类号:TV697;X143;X16
摘要
目前准确量化温室气体排放量已成为气候变化研究和政策制定的关键.在IPCC水库温室气体净通量的概念性框架下,国际水电协会汇总分析了全球223座水库的CO2和CH4研究成果,构建了G-res Tool,其可以用于评估已建或待建水库在长时间尺度下的温室气体净通量.本文介绍了G-res Tool模型的基本原理与模型框架,利用模型内置数据库中所涉及的中国长江上游12座典型水库数据进行初步应用分析,12座水库温室气体净通量平均值为88.17 g CO2e/(m2·a),在全球约7000座水库中所处水平为11.67%,处于低阈值范围.在水库温室气体净通量分析结果中,其他非相关人类活动产生的水库温室气体通量(UAS)在蓄水后总通量(Post)中所占比重远高于蓄水前温室气体通量(Pre).长江上游水库蓄水后的CH4和CO2通量对于温室效应的贡献量相当.通过将G-res Tool模型蓄水后的温室气体通量评估结果和所涉及到的12座水库中已发表的数据对比分析发现,G-res Tool具有简便、适用面广等特点.但G-res Tool毕竟仍为经验性模型,其基本原理和模块设计上的内在缺陷在很大程度上限制了其应用范围并造成了一定的不确定性.对个案水库而言,长期跟踪观测与机理研究仍是未来减少水库温室气体净通量不确定性的关键.
        The identification and accurate quantification of greenhouse gas(GHG) have become a key challenge for scientists and policymakers working on climate change. Under the conceptual framework of the IPCC for the net GHG flux of reservoir,the International Hydropower Association analyzed the 223 reservoirs with CO2 and CH4 emissions data from the actual and past scientific literature to develop the G-res Tool,whether for an existing reservoir or planned reservoir project can provide an estimate of the net GHG flux. This paper introduces the basic principle and model framework of the G-res Tool model. We conducted the preliminary analysis of 12 typical reservoirs in the upper reaches of the Yangtze River in China,which were involved in the model built-in database. The average net flux of greenhouse gas in the reservoirs was 88.17 g CO2 e/(m2·a),which ranked 11.67% and was in the low threshold range among about 7000 reservoirs globally. Comparing the evaluation results of each part in the model,the contribution of emissions from the reservoir due to Unrelated Anthropogenic Sources(UAS) in the post-impoundment GHG balance from the catchment(Post) was much higher than in the pre-impoundment GHG balance from the catchment after introduction of a reservoir(Pre). Based on the post-impoundment GHG balance from the reservoirs in the upper reaches of the Yangtze River in China,it was estimated that CH4 and CO2 fluxes contributed quite to the greenhouse effect. After analysis and comparison of the published GHG flux data of the 12 reservoirs involved,G-res Tool was easy to operate and showed a wider application range. However,G-res Tool,as an empirical model,still has few internal defects in its basic principles and model design parts,which may cause some uncertainties and limit its application range. For case reservoirs,long-term follow-up observation and mechanism study are still the main methods to reduce the uncertainty of the net GHG flux assessment in the future.
引文
[1] St Louis VL,Kelly CA,Duchemin E et al. Reservoir surfaces as sources of greenhouse gases to the atmosphere:A global estimate. Bioscience,2000,50(9):766-775.
    [2] Kelly CA,Rudd JWM,Bodaly RA et al. Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environmental Science&Technology,1997,31(5):1334-1344.
    [3] Abril G,Guerin F,Richard S et al. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir(Petit Saut,French Guiana). Global Biogeochemical Cycles,2005,19(4):16.
    [4] Guerin F,Abril G,De Junet A et al. Anaerobic decomposition of tropical soils and plant material:Implication for the CO2and CH4budget of the Petit Saut Reservoir. Applied Geochemistry,2008,23(8):2272-2283.
    [5] Tremblay A,Therrien J,Hamlin B et al. GHG emissions from boreal reservoirs and natural aquatic ecosystems. Greenhouse Gas Emissions-Fluxes and Processes,2005:209-232.
    [6] Song CH,Gardner KH,Klein SJW et al. Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renewable&Sustainable Energy Reviews,2018,90:945-956.
    [7] Tremblay A,Lambert M,Gagnon L. Do hydroelectric reservoirs emit greenhouse gases? Environmental Management,2004,33(1):S509-S517.
    [8] Kumar A,Sharma MP. A modeling approach to assess the greenhouse gas risk in Koteshwar Hydropower Reservoir,India.Human and Ecological Risk Assessment,2016,22(8):1651-1664.
    [9] Kumar A,Sharma MP. Assessment of risk of GHG emissions from Tehri Hydropower Reservoir,India. Human and Ecological Risk Assessment,2016,22(1):71-85.
    [10] Kumar A,Yang T,Sharma MP. Long-Term prediction of greenhouse gas risk to the Chinese Hydropower Reservoirs. Science of the Total Environment,2019,646:300-308.
    [11] O.Edenhofer R,Pichs-Madruga Y,Sokona K et al. IPCC 2011:IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press,2011.
    [12] Barros N,Cole JJ,Tranvik LJ et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geosci,2011,4(9):593-596.
    [13] Demarty M,Bastien J. GHG emissions from hydroelectric reservoirs in tropical and equatorial regions:Review of 20 years of CH4emission measurements. Energy Policy,2011,39(7):4197-4206.
    [14] Tortajada C,Altinbilek HD,Biswas AK. Impacts of Large Dams:A Global Assessment. 2012.
    [15] Delsontro T,Kunz MJ,Kempter T et al. Spatial Heterogeneity of Methane Ebullition in a Large Tropical Reservoir. Environmental Science&Technology,2011,45(23):9866-9873.
    [16] Maeck A,Delsontro T,Mcginnis DF et al. Sediment Trapping by Dams Creates Methane Emission Hot Spots. Environmental Science&Technology,2013,47(15):8130-8137.
    [17] Ahearn DS,Sheibley RW,Dahlgren RA et al. Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada,California. Journal of Hydrology,2005,313(3/4):234-247.
    [18] Brett MT,Arhonditsis GB,Mueller SE et al. Non-point-source impacts on stream nutrient concentrations along a forest to urban gradient. Environmental Management,2005,35(3):330-342.
    [19] Jarvie HP,Withers PJA,Bowes MJ et al. Streamwater phosphorus and nitrogen across a gradient in rural-agricultural land use intensity. Agriculture,Ecosystems&Environment,2010,135(4):238-252.
    [20] Matson PA,Parton WJ,Power AG et al. Agricultural Intensification and Ecosystem Properties. Science,1997,277(5325):504-509.
    [21] Hijmans RJ,Cameron SE,Parra JL et al. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology,2005,25(15):1965-1978.
    [22] Fetke BM. Global composite runoff fields based on observed river discharge and simulated water balances. Complex Systems Research Center,University of New Hampshire. UNH-GRDC Composite Runoff Fields v1.0,2000.
    [23] Lehner B,Liermann CR,Revenga C et al. High resolution mapping of the world’s reservoirs and dams for sustainable river flow management. Frontiers in Ecology and the Environment,2011. DOI:10.1890/100125.
    [24] Read JS,Hamilton DP,Jones ID et al. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environmental Modelling&Software,2011,26(11):1325-1336.
    [25] Wetzel R ed. Limnology lake and river ecosystems. Elsevier Academic Press,2001.
    [26] Editorial board of China Electric Power Encyclopedia ed. China electric power encyclopedia:third edition,hydroelectric power volume. Beijing:China Electric Power Press,2014.[《中国电力百科全书》编辑委员会.中国电力百科全书:第三版,水力发电卷.北京:中国电力出版社,2014.]
    [27] Zheng H,Zhao XJ,Zhao TQ et al. Spatial-temporal variations of methane emissions from the ertan hydroelectric reservoir in southwest China. Hydrological Processes,2011,25(9):1391-1396.
    [28] Wang FS,Wang BL,Liu CQ et al. Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River,southwest of China. Atmospheric Environment,2011,45(23):3827-3834.
    [29] Zhao DZ,Tan DB,Wang CH et al. Measurement and analysis of greenhouse gas fluxes from Shuibuya Reservoir in Qingjiang River Basin. Journal of Yangtze River Scientific Research Institute,2011,28(10):197-204.[赵登忠,谭德宝,汪朝辉等.清江流域水布垭水库温室气体交换通量监测与分析研究.长江科学院院报,2011,28(10):197-204.]
    [30] Kumar A,Yang T,Sharma MP. Long-term prediction of greenhouse gas risk to the Chinese hydropower reservoirs. Science of the Total Environment,2019,646:300-308.
    [31] Yan GA,Liu YD. Aquatic ecosystems:carbon cycle and as atmospheric CO2sink. Acta Ecologica Sinica,2001,21(5):827-833.[严国安,刘永定.水生生态系统的碳循环及对大气CO2的汇.生态学报,2001,21(5):827-833.]
    [32] Hidrovo AB,Uche J,Martinez-Gracia A. Accounting for GHG net reservoir emissions of hydropower in Ecuador. Renewable Energy,2017,112:209-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700