用户名: 密码: 验证码:
麻多高寒湿地冻结过程中土壤热通量变化特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of the Characteristics of Soil Heat Flux in the Freezing Process of Alpine Wetland at Maduo Station
  • 作者:李光伟 ; 文军 ; 王欣 ; 王作亮 ; 贾东于 ; 陈金雷
  • 英文作者:LI Guangwei;WEN Jun;WANG Xin;WANG Zuoliang;JIA Dongyu;CHEN Jinlei;Key Laboratory of Land Surface Process and Climate Change in Cole and Arid Regions,Northwest Institute of Eco-Environment and Resource,Chinese Academy of Sciences;University of Chinese Academy of Sciences;College of Atmospheric Sciences,Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,Chengdu University of Information Technology;
  • 关键词:高寒湿地 ; 冻融过程 ; 土壤热通量 ; 冻结潜热
  • 英文关键词:Alpine wetland;;Freezing process;;Soil heat flux;;Freezing latent heat
  • 中文刊名:大气科学
  • 英文刊名:Chinese Journal of Atmospheric Sciences
  • 机构:中国科学院西北生态环境资源研究院寒旱区陆面过程与气候变化重点实验室;中国科学院大学;成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:大气科学
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目41530529、91737103~~
  • 语种:中文;
  • 页:18-28
  • 页数:11
  • CN:11-1768/O4
  • ISSN:1006-9895
  • 分类号:S152
摘要
准确量化高寒湿地下垫面冻结过程中土壤热通量的变化特征,对认识高寒湿地—大气间水热交换过程有重要的科学意义。本文利用中国科学院麻多气候与环境综合观测站2014年5月至2015年5月的观测资料,分析了下垫面冻结过程中土壤热通量变化特征,探讨了冻结潜热对土壤热通量的贡献。基于温度积分计算土壤热通量的算法,指出在计算冻结过程中的土壤热通量时,需要同时考虑土壤热通量板以上的土壤热贮存及热通量板以上的冻结潜热。研究表明:(1)冻结锋面形成后,锋面所在深度土壤体积含水量迅速降低,锋面以下土壤热通量接近于零,土壤液态水开始冻结,冻结潜热向上穿过热通量板所在土壤层;降水下渗土壤后冻结所释放的潜热能使次日凌晨5 cm深度土壤热通量接近于零。(2)季节性冻结期,凌晨气温较高时穿过5 cm土壤层的向上土壤热通量很小,可能是由表层土壤发生了日冻融循环所致。土壤水释放的冻结潜热使土壤温度波动减弱并维持在冰点附近。高寒湿地下垫面仅在很浅的表层发生日冻融循环,无法通过5 cm土壤温度资料判断下垫面循环出现日期。(3)加入冻结潜热项,土壤热通量的计算值与实测值之间的均方根误差将会从11.5 W m~(-2)下降到6.2 W m~(-2)。以上研究结果对认识寒区陆面过程有重要的贡献。
        The accurate quantification of soil heat flux in the freezing process of the alpine wetland in the source area of the Yellow River has an important scientific significance for understanding the water and heat exchanges between alpine wetlands and the atmosphere. By using the field observed data collected from the Maduo climate and environment comprehensive observatory of the Chinese Academy of Sciences from May 2014 to May 2015, the characteristics of soil heat flux as the alpine wetlands froze were analyzed. The effect of the latent heat of fusion on soil heat flux was also discussed. Both the heat storage and latent heat of fusion loss from above the plate must be considered when calculating the soil heat flux at the alpine wetland using the simple measurement approach algorithm. If the latent heat of fusion is ignored, then large errors can be found. The main results are as follows.(1) After the freezing front appeared, soil heat flux at a depth below the freezing front decreases and approaches zero, the liquid water content of the soil at the depth of the freezing front decreases rapidly, and the soil below the freezing front froze. In addition, the freezing released latent heat travels upward through the soil layer where the soil heat flux plate is located and observed. As the precipitation infiltrates into the soil, thus releasing the freezing latent heat, the freezing latent heat causes the observed soil heat flux to approach zero at a depth of 5 cm.(2) During the seasonally freezing processes, upward soil heat flux at a depth of 5 cm approaches zero if there is a high temperature in the morning and at noon of the previous day. This phenomenon indicates the existence of a diurnal freezing-thawing cycle. The latent heat released by soil water can reduce the amplitude of soil temperature and keep the soil temperature near the freezing point. The diurnal freezing-thawing processes solely occur in a very shallow soil layer, making it difficult to ascertain whether the diurnal freezing-thawing cycle happened not just by using soil temperature data at a depth of 5 cm.(3) Considering the latent heat of fusion factor decreases the root mean square errors of soil heat flux between the observed and calculated values from 11.5 W m~(-2) to 6.2 W m~(-2). These findings can contribute towards a better understanding of the land surface processes in cold regions.
引文
Bai J H,Lu Q Q,Zhao Q Q,et al.2013.Effects of alpine wetland landscapes on regional climate on the Zoige Plateau of China[J].Adv.Meteor.,2013:972430.doi:10.1155/2013/972430
    Beer C,Lucht W,Gerten D,et al.2007.Effects of soil freezing and thawing on vegetation carbon density in Siberia:A modeling analysis with the Lund-Potsdam-Jena Dynamic Global Vegetation Model(LPJ-DGVM)[J].Global Biogeochemical Cycles,21(1):GB1012.doi:10.1029/2006GB002760
    陈金雷,文军,王欣,等.2017.黄河源高寒湿地-大气间暖季水热交换特征及关键影响参数研究[J].大气科学,41(2):302-312.Chen J L,Wen J,Wang X,et al.2017.Characteristics of water and heat exchanges and their crucial influencing factors on the alpine wetland during the warm season in the source region of the Yellow River[J].Chinese Journal of Atmospheric Sciences(in Chinese),41(2):302-312.doi:10.3878/j.issn.1006-9895.1607.16103
    陈星,余晔,陈晋北,等.2014.黄土高原半干旱区冬小麦田土壤热通量的计算方法研究[J].高原气象,33(6):1514-1525.Chen X,Yu Y,Chen J B,et al.2014.Study of estimation of soil heat flux at a wheat field in semi-arid area of Loess Plateau[J].Plateau Meteor.(in Chinese),33(6):1514-1525.doi:10.7522/j.issn.1000-0534.2013.00091
    Gao Z Q,Fan X G,Bian L G.2003.An analytical solution to onedimensional thermal conduction-convection in soil[J].Soil Sci.,168(2):99-107.doi:10.1097/00010694-200302000-00004
    葛骏,余晔,李振朝,等.2016.青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J].高原气象,35(3):608-620.Ge J,Yu Y,Li Z C,et al.2016.Impacts of freeze/thaw processes on land surface energy fluxes in the permafrost region of Qinghai-Xizang Plateau[J].Plateau Meteor.(in Chinese),35(3):608-620.doi:10.7522/j.issn.1000-0534.2016.00032
    Guo D L,Yang M X,Wang H J.2011.Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau[J].Hydrol.Proc.,25(16):2531-2541.doi:10.1002/hyp.8025
    Hu H,Argyropoulos S A.1996.Mathematical modelling of solidification and melting:A review[J].Modell.Simul.Mater.Sci.Eng.,4(4):371-396.doi:10.1088/0965-0393/4/4/004
    IPCC.2013.Climate Change 2013:The Physical Science Basis.Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge,UKand New York,USA:Cambridge University Press,1535pp.doi:10.1017/CBO9781107415324
    Mayocchi C L,Bristow K L.1995.Soil surface heat flux:Some general questions and comments on measurements[J].Agric.Forest Meteor.,75(1-3):43-50.doi:10.1016/0168-1923(94)02198-S
    孟宪民.1999.湿地与全球环境变化[J].地理科学,19(5):385-391.Meng X M.1999.Wetlands and global environmental change[J].Sci.Geogra.Sinica(in Chinese),19(5):385-391.doi:10.3969/j.issn.1000-0690.1999.05.001
    Mohamed Y A,Bastiaanssen W G M,Savenije H H G,et al.2012.Wetland versus open water evaporation:An analysis and literature review[J].Phy.Chem.Earth,47-48:114-121.doi:10.1016/j.pce.2011.08.005
    Oleson K W,Lawrence D M,Bonan G B,et al.2013.Technical Description of Version 4.5 of the Community Land Model(CLM)[M].USA:NCAR.
    潘竟虎,王建,王建华.2007.长江、黄河源区高寒湿地动态变化研究[J].湿地科学,5(4):298-304.Pan J H,Wang J,Wang J H.2007.Dynamic change of frigid wetlands in source region of the Yangtze and Yellow rivers[J].Wetland Sci.(in Chinese),5(4):298-304.doi:10.13248/j.cnki.wetlandsci.2007.04.003
    Philip J R,De Vries D A.1957.Moisture movement in porous materials under temperature gradients[J].Eos,Trans.Amer.Geophys.Union,38(2):222-232.doi:10.1029/TR038i002p00222
    Rolph III W D,Bathe K J.1982.An efficient algorithm for analysis of non-linear heat-transfer with phase-changes[J].Int.J.Numer.Meth.Eng.,18(1):119-134.doi:10.1002/nme.1620180111
    Russell E S,Liu H P,GaoZ M,et al.2015.Impacts of soil heat flux calculation methods on the surface energy balance closure[J].Agric.Forest Meteor.,214-215:189-200.doi:10.1016/j.agrformet.2015.08.255
    Shamsundar N,Sparrow E M.1975.Analysis of multidimensional conduction phase change via the enthalpy model[J].Journal of Heat Transfer,97(3):333-340.doi:10.1115/1.3450375
    Tanaka K,Ishikawa H,Hayashi T,et al.2001.Surface energy budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data[J].J.Meteor.Soc.Japan,79(1B):505-517.doi:10.2151/jmsj.79.505
    王澄海,董文杰,韦志刚.2003.青藏高原季节冻融过程与东亚大气环流关系的研究[J].地球物理学报,46(3):309-316.Wang C H,Dong W J,Wei Z G.2003.Study on relationship between the frozenthaw process in Qinghai-Xizang Plateau and circulation in East-Asia[J].Chinese J.Geophys.(in Chinese),46(3):309-316.doi:10.3321/j.issn:0001-5733.2003.03.005
    王璐璐,陈晓飞,马巍,等.2007.不同土壤冻融特征曲线的试验研究[J].冰川冻土,29(6):1004-1011.Wang L L,Chen X F,Ma W,et al.2007.Experimental study of the freezing and thawing characteristic curves of different soils[J].J.Glaciol.Geocryol.(in Chinese),29(6):1004-1011.doi:10.3969/j.issn.1000-0240.2007.06.022
    Whalen S C.2005.Biogeochemistry of methane exchange between natural wetlands and the atmosphere[J].Environ.Eng.Sci.,22(1):73-94.doi:10.1089/ees.2005.22.73
    Yang M X,Yao T D,Gou X H,et al.2007.Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau[J].Chinese Sci.Bull.,52(1):136-139.doi:10.1007/s11434-007-0004-8
    Yao J M,Zhao L,Gu L L,et al.2011.The surface energy budget in the permafrost region of the Tibetan Plateau[J].Atmos.Res.,102(4):394-407.doi:10.1016/j.atmosres.2011.09.001
    张宇,李东庆,明锋.2016.冻融循环作用下土体冻结锋面移动规律试验研究[J].冰川冻土,38(3):679-684.Zhang Y,Li D Q,Ming F.2016.Experimental study of the freezing front movement owing to freezing-thawing cycles[J].J.Glaciol.Geocryol.(in Chinese),38(3):679-684.doi:10.7522/j.issn.1000-0240.2016.0075

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700