用户名: 密码: 验证码:
抚仙湖有色可溶性有机物的来源组成与时空变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sources,composition and spatiotemporal variations of chromophoric dissolved organic matter in a deep oligotrophic Lake Fuxian,China
  • 作者:陈乐 ; 周永强 ; 周起超 ; 李凯迪 ; 张运林 ; 赵玉伟 ; 陆轶峰 ; 常军军
  • 英文作者:CHEN Le;ZHOU Yongqiang;ZHOU Qichao;LI Kaidi;ZHANG Yunlin;ZHAO Yuwei;LU Yifeng;CHANG Junjun;Institute of International River and Eco-security,Yunnan University;Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed,Yunnan Institute of Environmental Science;State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;Institute for Ecological Research and Pollution Control of Plateau Lakes,School of Resource Environment and Earth Science,Yunnan University;School of Ecology and Environmental Science,Yunnan University;Yuxi Fuxian Lake Administration;
  • 关键词:有色可溶性有机物 ; 紫外—可见吸收光谱 ; 三维荧光光谱 ; 平行因子分析 ; 云南高原 ; 抚仙湖
  • 英文关键词:Chromophoric dissolved organic matter(CDOM);;UV-visible spectroscopy;;fluorescence spectroscopy;;parallel factor analysis(PARAFAC);;Yunnan Plateau;;Lake Fuxian
  • 中文刊名:湖泊科学
  • 英文刊名:Journal of Lake Sciences
  • 机构:云南大学国际河流与生态安全研究院;云南省环境科学研究院云南省高原湖泊流域污染过程与管理重点实验室;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;云南大学资源环境与地球科学学院/高原湖泊生态与治理研究院;云南大学生态学与环境学院;玉溪市抚仙湖管理局;
  • 出版日期:2019-09-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:05
  • 基金:云南省科技计划项目(2016RA081,2017FD029);; 国家自然科学基金项目(41601208,41621002);; 云南省环境科学研究院创新团队计划项目联合资助
  • 语种:中文;
  • 页:169-179
  • 页数:11
  • CN:32-1331/P
  • ISSN:1003-5427
  • 分类号:X524
摘要
基于2017年1—12月在抚仙湖开展的逐月观测,利用紫外—可见吸收光谱和三维荧光光谱技术探讨该湖有色可溶性有机物(CDOM)的来源组成及时空变化特征.12个月CDOM吸收值a(254)的均值为3.47±0.57 m-1,范围为1.82~5.22m-1,说明CDOM丰度较低.平行因子分析结果给出了2种类酪氨酸荧光组分(C1和C3)、1种类色氨酸荧光组分(C2)、1种类腐殖质荧光组分(C4),12个月内源组分(C1+C3)对总荧光强度的平均贡献为65.81%±15.38%,外源组分(C2+C4)的平均贡献为34.19%±15.38%;荧光指数FI的均值为1.73±0.14,腐殖化指数HIX的均值为1.02±0.37,生源化指数BIX的均值为1.23±0.27,说明CDOM主要为微生物内源产生.时空变化方面,春(3—5月)、夏(6—8月)、秋(9—11月)和冬(1、2、12月)季的a(254)分别为3.20±0.47、3.76±0.64、3.67±0.50和3.23±0.38 m-1,夏季和秋季均显著高于冬季和春季; CDOM丰度及内外源组分的空间分布具有季节异质性,可能与流域土地利用、河流输入、降雨、温度、光辐射等因素有关.
        Lakes are important in terrestrial carbon cycling. Source and optical composition of chromophoric dissolved organic matter(CDOM) in oligotrophic and deep lakes can display distinct properties,because of deep light penetration and long water residence time in these lakes. In this study,the optical properties and spatiotemporal distributions of CDOM were analyzed through monthly field investigation in 2017 in Lake Fuxian,an oligotrophic deep lake in Yunnan Province,China. The results showed that the average value of a(254) was 3.47±0.57 m-1,with the range of 1.82-5.22 m-1,indicating that CDOM abundance in the lake was relatively low compared with other mesotrophic and eutrophic lakes. Moreover,parallel factor analysis was performed to assess CDOM composition from excitation-emission matrix spectra and four components were identified: two tyrosine-like components(C1 and C3),one tryptophan-like component(C2) and one humic-like component(C4). The percentage of fluorescent intensity of C1+C3 was 65.81% ±15.38%,and the proportion of C2+C4 was 34.19% ±15.38%. The fluorescence index(FI),humification index(HIX) and biological/autochthonous index(BIX) was 1.73 ± 0.14,1.02 ± 0.37 and 1.23 ± 0.27,respectively. These results demonstrated that the CDOM was primarily originated from endogenous microbes in this lake. The average values of a(254) in spring(March-May),summer(June-August),autumn(September-November) and winter(January,February and December)were 3.20±0.47,3.76±0.64,3.67±0.50 and 3.23±0.38 m-1 respectively,with significantly higher values in summer and autumn than those in winter and spring. The abundance and spatial distributions of autochthonous and allochthonous CDOM exhibited seasonal heterogeneity,which might be correlated with land-use pattern,input of terrestrial materials,rainfall,water temperature and irradiance.
引文
[1] Zhang Y,Zhang E,Yin Y et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau,China,differing in trophic state and altitude. Limnology and Oceanography,2010,55(6):2645-2659.DOI:10.4319/lo.2010.55.6.2645.
    [2] Yao X,Zhang Y,Zhu G et al. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere,2011,82(2):145-155. DOI:10.1016/j.chemosphere.2010.10.049.
    [3] Coble AA,Marcarelli AM,Kane ES. Ammonium and glucose amendments stimulate dissolved organic matter mineralization in a Lake Superior tributary. Journal of Great Lakes Research,2015,41(3):801-807. DOI:10.1016/j.jglr.2015.05.015.
    [4] Shang P,Lu Y,Du Y et al. Climatic and watershed controls of dissolved organic matter variation in streams across a gradient of agricultural land use. Science of the Total Environment,2018,612:1442-1453. DOI:10. 1016/j. scitotenv. 2017.08.322.
    [5] Cole JJ,Prairie YT,Caraco NF et al. Plumbing the global carbon cycle:Integrating inland waters into the terrestrial carbon budget. Ecosystems,2007,10(1):171-184. DOI:10.1007/s.
    [6] Tranvik LJ,Downing JA,Cotner JB et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography,2009,54(6):2298-2314. DOI:10.4319/lo.2009.54.6_part_2.2298.
    [7] Helms JR,Stubbins A,Ritchie JD et al. Absorption spectral slopes and slope ratios as indicators of molecular weight,source,and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography,2008,53(3):955-969. DOI:10.4319/lo.2008.53.3.0955.
    [8] Zhang Y,Gao G,Shi K et al. Absorption and fluorescence characteristics of rainwater CDOM and contribution to Lake Taihu,China. Atmospheric Environment,2014,98:483-491. DOI:10.1016/j.atmosenv.2014.09.038.
    [9] Zhou Y,Zhang Y,Shi K et al. Dynamics of chromophoric dissolved organic matter influenced by hydrological conditions in a large,shallow,and eutrophic lake in China. Environmental Science and Pollution Research,2015,22(17):12992-13003. DOI:10.1007/s11356-015-4556-x.
    [10] Lu YH,Bauer JE,Canuel EA et al. Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams. Biogeochemistry,2014,119(1/2/3):275-292. DOI:10.1007/s10533-014-9965-2.
    [11] Prairie YT. Carbocentric limnology:Looking back,looking forward. Canadian Journal of Fisheries and Aquatic Sciences,2008,65(3):543-548. DOI:10.1139/f08-011.
    [12] Lapierre JF,Guillemette F,Berggren M et al. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2emissions in boreal aquatic ecosystems. Nature Communications,2013,4:7. DOI:10.1038/ncomms3972.
    [13] Seekell D,Lapierre JF,Ask J. The influence of dissolved organic carbon on primary production in northern lakes. Limnology and Oceanography,2015,60(4):1276-1285. DOI:10.1002/lno.10096.
    [14] Thrane JE,Hessen DO,Andersen T. The absorption of li ght in lakes:Negative impact of dissolved organic carbon on primary productivity. Ecosystems,2014,17(6):1040-1052. DOI:10.1007/s10021-014-9776-2.
    [15] Zhou Y,Jeppesen E,Zhang Y et al. Dissolved organic matter fluorescence at wavelength 275/342 nm as a key indicator for detection of point-source contamination in a large Chinese drinking water lake. Chemosphere,2016,144:503-509.DOI:10.1016/j.chemosphere.2015.09.027.
    [16] Yamashita Y,Jaffe R,Maie N et al. Assessing the dynamics of dissolved organic matter(DOM)in coastal environments by excitation emission matrix fluorescence and parallel factor analysis(EEM-PARAFAC). Limnology and Oceanography,2008,53(5):1900-1908. DOI:10.4319/lo.2008.53.5.1900.
    [17] Zhao Y,Song K,Wen Z et al. Seasonal characterization of CDOM for lakes in semiarid regions of Northeast China using excitation-emission matrix fluorescence and parallel factor analysis(EEM-PARAFAC). Biogeosciences,2016,13(5):1635-1645. DOI:10.5194/bg-13-1635-2016.
    [18] Margolin AR,Gonnelli M,Hansell DA et al. Black Sea dissolved organic matter dynamics:Insights from optical analyses.Limnology and Oceanography,2018,63(3):1425-1443. DOI:10.1002/lno.10791.
    [19] Zhou Y,Yao X,Zhang Y et al. Response of dissolved organic matter optical properties to net inflow runoff in a large fluvial plain lake and the connecting channels. Science of the Total Environment,2018,639:876-887. DOI:10.1016/j.scitotenv.2018.05.180.
    [20] Song K,Shang Y,Wen Z et al. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis. Water Research,2019,150:403-417. DOI:10.1016/j.watres.2018.12.004.
    [21] Cheng QL,Zheng BH,Wang SR et al. Optical signatures of chromophoric dissolved organic matter in water body of Tien Lake. Spectroscopy and Spectral Analysis,2014,34(3):698-703.[程庆霖,郑丙辉,王圣瑞等.滇池水体有色溶解性有机质(CDOM)三维荧光光谱特征.光谱学与光谱分析,2014,34(3):698-703.]
    [22] Su Y,Chen F,Liu Z. Comparison of optical properties of chromophoric dissolved organic matter(CDOM)in alpine lakes above or below the tree line:Insights into sources of CDOM. Photochemical&Photobiological Sciences,2015,14(5):1047-1062. DOI:10.1039/c4pp00478g.
    [23] Zhang Y,Yin Y,Liu X et al. Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu,a large eutrophic,shallow lake in China. Organic Geochemistry,2011,42(5):510-519. DOI:10. 1016/j. orggeochem. 2011.03.007.
    [24] Zhou Q,Zhang Y,Li K et al. Seasonal and spatial distributions of euphotic zone and long-term variations in water transparency in a clear oligotrophic Lake Fuxian,China. Journal of Environmental Sciences,2018,72:185-197. DOI:10.1016/j.jes.2018.01.005.
    [25] Zhou QC,Zhang YL,Zhou YQ et al. Spectral attenuation of ultraviolet and visible radiation and its relationship with chromophoric dissolved organic matter in autumn/winter in Lake Fuxian,China. J Lake Sci,2016,28(6):1316-1327. DOI:10.18307/2016.0617.[周起超,张运林,周永强等.抚仙湖秋、冬季光衰减特征及其与有色可溶性有机物的关系.湖泊科学,2016,28(6):1316-1327.]
    [26] Gao W,Chen Y,Xu M et al. Trend and driving factors of water quality change in Lake Fuxian(1980-2011). J Lake Sci,2013,25(5):635-642. DOI:10.18307/2013.0503.[高伟,陈岩,徐敏等.抚仙湖水质变化(1980-2011年)趋势与驱动力分析.湖泊科学,2013,25(5):635-642.]
    [27] Chen JX,Lv Y,Zhao ZF et al. Using the multidimensional synthesis methods with non-parameter test,multiple time scales analysis to assess water quality trend and its characteristics over the past 25 years in the Fuxian Lake,China. Science of the Total Environment,2019,655:242-254. DOI:10.1016/j.scitotenv.2018.11.144.
    [28] Zhou Q,Wang W,Huang L et al. Spatial and temporal variability in water transparency in Yunnan Plateau lakes,China.Aquatic Sciences,2019,81(2):36. DOI:10.1007/s00027-019-0632-5.
    [29] Wang S,Wang J,Li M et al. Six decades of changes in vascular hydrophyte and fish species in three plateau lakes in Yunnan,China. Biodiversity and Conservation,2013,22(13):3197-3221. DOI:10.1007/s10531-013-0579-0.
    [30] Henderson RK,Baker A,Murphy KR et al. Fluorescence as a potential monitoring tool for recycled water systems:A review. Water Research,2009,43(4):863-81. DOI:10.1016/j.watres.2008.11.027.
    [31] Ou HS,Wei CH,Deng Y et al. Principal component analysis to assess the composition and fate of impurities in a large river-embedded reservoir:Qingcaosha Reservoir. Environmental Science Processes&Impacts,2013,15(8):1613-21. DOI:10.1039/c3em00154g.
    [32] Stedmon C,Bro R. Characterizing dissolved organic matter fluorescence with parallel factor analysis:A tutorial. Limnology and Oceanography-Methods,2008,6:572-579. DOI:10.4319/lom.2008.6.572.
    [33] Mc Knight DM,Boyer EW,Westerhoff PK et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography,2001,46(1):38-48. DOI:10.4319/lo.2001.46.1.0038.
    [34] Huguet A,Vacher L,Relexans S et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry,2009,40(6):706-719. DOI:10.1016/j.orggeochem.2009.03.002.
    [35] Editorial board of“Water and wastewater monitoring and analysis method”,Ministry of Environmental Protection of the People’s Republic of China ed. Monitoring and analysis methods of water and wastewater:fourth edition. Beijing:China Environmental Science Press,2002.[国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法:第4版.北京:中国环境科学出版社,2002.]
    [36] Zhang Y,Zhou Y,Shi K et al. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients:Implications for monitoring and assessing lake eutrophication. Water Research,2018,131:255-263.DOI:10.1016/j.watres.2017.12.051.
    [37] Huang CC,Li Y,Wang Q et al. Components optical property of CDOM in lake Taihu based on three-dimensional excitation emission matrix fluorescence. J Lake Sci,2010,22(3):375-382. DOI:10.18307/2010.0309.[黄昌春,李云梅,王桥等.基于三维荧光和平行因子分析法的太湖水体CDOM组分光学特征.湖泊科学,2010,22(3):375-382.]
    [38] Osburn CL,Handsel LT,Mikan MP et al. Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary. Environmental Science&Technology,2012,46(16):8628-8636. DOI:10.1021/es3007723.
    [39] Zhu WZ,Zhang J,Yang GP. Mixing behavior and photobleaching of chromophoric dissolved organic matter in the Changjiang River estuary and the adjacent East China Sea. Estuarine,Coastal and Shelf Science,2018,207:422-434.DOI:10.1016/j.ecss.2017.07.019.
    [40] Sun H,Zhang YD,Yu JL et al. Contribution of allochthonous dissolved organic carbon to the carbon source of planktonic crustaceans in Lake Fuxian. J Lake Sci,2017,29(4):887-895. DOI:10.18307/2017.0412.[孙欢,张永东,于谨磊等.外源溶解性有机碳对抚仙湖甲壳类浮游动物碳源的贡献.湖泊科学,2017,29(4):887-895.]
    [41] Brando LPM,Brighenti LS,Staehr PA et al. Distinctive effects of allochthonous and autochthonous organic matter on CDOM spectra in a tropical lake. Biogeosciences,2018,15(9):2931-2943. DOI:10.5194/bg-15-2931-2018.
    [42] Chen J,Yang H,Zeng Y et al. Combined use of radiocarbon and stable carbon isotope to constrain the sources and cycling of particulate organic carbon in a large freshwater lake,China. Science of the Total Environment,2018,625:27-38. DOI:10.1016/j.scitotenv.2017.12.275.
    [43] Birdwell JE,Engel AS. Characterization of dissolved organic matter in cave and spring waters using UV-Vis absorbance and fluorescence spectroscopy. Organic Geochemistry,2010,41(3):270-280. DOI:10.1016/j.orggeochem.2009.11.002.
    [44] Ohno T,Chorover J,Omoike A et al. Molecular weight and humification index as predictors of adsorption for plant-and manure-derived dissolved organic matter to goethite. European Journal of Soil Science,2007,58(1):125-132. DOI:10.1111/j.1365-2389.2006.00817.x.
    [45] Liu L,Liu JD,Wu DR et al. Distributed simulation of global solar radiation over mountainous region in Yunnan Province.Meteorological and Environmental Sciences,2014,37(1):13-19.[刘玲,刘建栋,邬定荣等.云南山地太阳总辐射的分布式模拟.气象与环境科学,2014,37(1):13-19.]
    [46] Xia TX,Pan JZ,Liu XH et al. Non-point source pollution characteristics in Fuxianhu Lake watershed and variation law of N and P in lake water. Journal of Agro-Environment Science,2008,27(4):1340-1345.[夏天翔,潘继征,刘雪华等.抚仙湖水体N P变化及其非点源污染特征.农业环境科学学报,2008,27(4):1340-1345.]
    [47] Dai X,Zhou Y,Ma W et al. Influence of spatial variation in land-use patterns and topography on water quality of the rivers inflowing to Fuxian Lake,a large deep lake in the plateau of southwestern China. Ecological Engineering,2017,99:417-428. DOI:10.1016/j.ecoleng.2016.11.011.
    [48] Aburto-Medina A,Shahsavari E,Salzman SA et al. Elucidation of the microbial diversity in rivers in south-west Victoria,Australia impacted by rural agricultural contamination(dairy farming). Ecotoxicology and Environmental Safety,2019,172:356-363. DOI:10.1016/j.ecoenv.2019.01.112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700