用户名: 密码: 验证码:
高海拔环境下氧化铜矿浮选优化试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on Flotation Optimization of Copper Oxide Ore in High Altitude Environment
  • 作者:刘子龙 ; 杨洪英 ; 佟琳琳 ; 陈国宝
  • 英文作者:LIU Zilong;YANG Hongying;TONG Linlin;CHEN Guobao;School of Metallurgy,Northeastern University;
  • 关键词:氧化铜 ; 工艺矿物学 ; 抑制剂 ; 浮选优化 ; 高海拔环境
  • 英文关键词:copper oxide;;process mineralogy;;inhibitor;;flotation optimization;;high altitude environment
  • 中文刊名:黄金科学技术
  • 英文刊名:Gold Science and Technology
  • 机构:东北大学冶金学院;
  • 出版日期:2019-08-31
  • 出版单位:黄金科学技术
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目“含砷复杂金矿细菌氧化矿物界面及其作用机制的基础研究”(编号:U1608254);; 低品位难处理金矿综合利用国家重点实验室开放基金项目“低品位矿石生物堆浸模拟机优化研究”[编号:ZJKY2017(B)KFJJ01&ZJKY2017(B)KFJ02]联合资助
  • 语种:中文;
  • 页:125-133
  • 页数:9
  • CN:62-1112/TF
  • ISSN:1005-2518
  • 分类号:TD923;TD952
摘要
针对西藏某大型选矿厂在处理高海拔复杂氧化铜浮选精矿时存在品位不合格、回收率不理想的问题,对矿物开展工艺矿物学研究,基于此开展磨矿细度及浮选药剂制度优化试验。工艺矿物学研究表明:原矿铜氧化率为36.80%,其中结合氧化铜占16.59%,铜品位为0.51%,金品位为0.25×10-6,银品位为14.24×10-6,矿石中含铜量较高的次生铜矿物砷黝铜矿多与黄铁矿连生或共生,影响到铜精矿的质量和铜的回收率;矿石中含有一定的白云母、长石、石膏和方解石等,在磨矿过程中极易产生泥化现象,影响铜矿物上浮。为此现场在选矿中通过添加大量石灰,利用高碱度和新型药剂T506来抑制黄铁矿的上浮。试验室闭路试验表明:采用现场一粗三扫三精浮选流程,在粗选作业段采用新型抑制剂T506替代部分石灰,并适当增加Na2S用量,精选作业段在pH=11的基础上适量增加T506用量,可获得精矿铜品位为19.72%,金品位为2.66×10-6,银品位300.36×10~(-6),铜回收率为65.50%,金回收率为18.36%,银回收率为35.92%的试验指标。精矿品位较现场生产条件提高了9.18%,铜选矿作业回收率提高了4.87%。
        The grade of high-altitude complex copper oxide flotation concentrates treated in a large-scale concentrator in Tibet was unqualified,and the recovery rate was not satisfactory.Through the study of mineralogy of minerals,the embedding characteristics of metal minerals and gangue minerals was obtained.The secondary copper ores with high copper content as well as the mineral arsenic bismuth copper ore are closely embedded with pyrite,where a mixture of copper and iron minerals often forms,which can affect the quality of copper concentrate and the recovery rate of copper. There are a certain amount of muscovite,feldspar,gypsum and calcite in the ores. Muddy phenomenon is prone to occur during the grinding process,which can affect the copper mineral floating. Thus,the optimization of grinding fineness and flotation reagent system for this refractory oxide copper ore was carried out in this study.On the spot,a large amount of lime was added,and the pH value was adjusted to 11 using high alkalinity to inhibit the rise of pyrite. From the study of process mineralogy,it was known that pyrite was dissolved by pyrite,and pyrite was suppressed at the same time.It will affect the rise of copper minerals.The new drug T506 is an inhibitor developed for the characteristics of pyrite.This inhibitor interacts with the surface of pyrite by adjusting the arrangement of polar groups to achieve the effect of inhibiting the rise of pyrite.The laboratory closed-circuit test was conducted in condition of the copper oxidation rate of ore is 36.80%,where combined copper oxide is 16.59%,copper grade is 0.51%,gold grade is0.25×10-6,and silver grade is 14.24×10-6.In the selection process,the new inhibitor T506 is used to replace part of the lime in the rough selection section,and the amount of sodium sulfide is appropriately increased.On the basis of ensuring the pH value of 11 in the selected operation section,the amount of T506 is increased in an appropriate amount to obtain a concentrate with a copper grade of 19.72%,a gold grade of 2.66×10~(-6),a silver grade of 300.36×10-6,a copper recovery rate of 65.50%,a gold recovery rate of 18.36% and a silver recovery rate of 35.92%. The concentrate grade increased by 9.18% compared with the one in on-site production conditions,and the copper beneficiation recovery rate increased by 4.87%. Under the premise of ensuring the qualified copper grade of the produced concentrate,the recovery rate of copper is correspondingly increased,and the purpose of increasing the economic benefits of the enterprise and comprehensively utilizing valuable mineral resources is achieved.
引文
[1]王鹏程,陈志勇,曹志明,等.氧化铜矿石的选矿技术现状与展望[J].金属矿山,2016,45(5):106-112.Wang Pengcheng,Chen Zhiyong,Cao Zhiming,et al.Present situation and prospect of beneficiation technol‐ogy of copper oxide ore[J].Metal Mine,2016,45(5):106-112.
    [2]王凯,崔毅琦,童雄,等.难选氧化铜矿石的选矿方法及研究方向[J].金属矿山,2012,41(8):80-83,117.Wang Kai,Cui Yiqi,Tong Xiong,et al.Beneficiation method and research direction of refractory oxidized cop‐per ores[J].Metal Mine,2012,41(8):80-83,117.
    [3]丁鹏,刘全军,逄文好.哈萨克斯坦某低品位高氧化率铜矿选矿试验研究[J].有色金属(选矿部分),2014(1):9-12.Ding Peng,Liu Quanjun,Pang Wenhao.Study on benefi‐ciation of a low-grade copper ore with high oxidation rate of Kazakhstan[J].Nonferrous Metals(Mineral Process‐ing Section),2014(1):9-12.
    [4]李潇雨,周满赓,王婧,等.攀西钒钛磁铁矿硫族元素工艺矿物学研究[J].中国矿业,2016,25(1):118-124,134.Li Xiaoyu,Zhou Mangeng,Wang Jing,et al.Craft miner‐alogy research of chalcogens in Panxi vanadium-titanium magnetite[J].China Mining Magazine,2016,25(1):118-124,134.
    [5]谢峰,张汉平,陈献梅.云南某沉积型铝土矿工艺矿物学研究[J].矿冶,2015,24(2):81-84.Xie Feng,Zhang Hanping,Chen Xianmei.Study on pro‐cess mineralogy of a sedimentary bauxite in Yunnan[J].Mining and Metallurgy,2015,24(2):81-84.
    [6]李红立,廖璐,尹江生,等.内蒙古某稀有稀土矿工艺矿物学研究[J].内蒙古科技与经济,2016(3):76-78.Li Hongli,Liao Lu,Yin Jiangsheng,et al.Study on miner‐alogical technology of a rare mineral in Inner Mongolia[J].Inner Mongolia Science Technology and Economy,2016(3):76-78.
    [7]王立刚,刘万峰,孙志健.西藏玉龙铜矿氧化铜钼矿选矿试验研究[J].有色金属(选矿部分),2009(4):1-3,11.Wang Ligang,Liu Wanfeng,Sun Zhijian.The mineral processing research on oxidized copper-molybdemun ore from tibet yulong copper mine[J].Nonferrous Metals(Mineral Processing Section),2009(4):1-3,11.
    [8]方建军,李艺芬.氧化铜矿的工艺矿物学特征与选矿工艺研究[J].云南冶金,2005,34(4):50-53.Fang Jianjun,Li Yifen.Study on technological mineralo‐gy and concentration of oxide copper ore[J].Yunnan Met‐allurgy,2005,34(4):50-53.
    [9]青岩,郭文鹏,张海荣,等.玉龙铜矿难选氧化铜矿高效选矿及工业应用研究[J].中国矿山工程,2018,47(4):4-8,20.Qing Yan,Guo Wenpeng,Zhang Hairong,et al.Study on efficiency ore dressing and industrial application of re‐fractory oxidized copper ore in Yulong copper mine[J].China Mine Engineering,2018,47(4):4-8,20.
    [10]孙志健,陈经华,李成必,等.某含泥难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),2013(4):5-8,13.Sun Zhijian,Chen Jinghua,Li Chengbi,et al.Study on the beneficiation test of a refractory oxide copper ore contain‐ing high-content slimes[J].Nonferrous Metals(Mineral Processing Section),2013(4):5-8,13.
    [11]邱廷省,郑锡联,冯金妮.氧化铜矿石选矿技术研究进展[J].金属矿山,2011,40(12):82-86.Qiu Tingsheng,Zheng Xilian,Feng Jinni.Research prog‐ress of mineral processing technology of copper oxide ore[J].Metal Mine,2011,40(12):82-86.
    [12]蒋太国,方建军,张铁民,等.氧化铜矿选矿技术研究进展[J].矿产保护与利用,2014(4):49-53.Jiang Taiguo,Fang Jianjun,Zhang Tiemin,et al.Progress in copper oxide ores beneficiation technology[J].Conser‐vation and Utilization of Mineral Resources,2014(4):49-53.
    [13]赖亚J.泡沫浮选表面化学[M].何伯泉,陈祥涌,译.北京:冶金工业出版社,1987.Laiya J.Foam Flotation Surface Chemistry[M].He Bo‐quan,Chen Xiangyong,transl.Beijing:Metallurgical In‐dustry Press,1987.
    [14]陈经华,孙志健,叶岳华.同步浮选和异步浮选在氧化铜矿选矿中的应用研究[J].有色金属(选矿部分),2013(增):67-69.Chen Jinghua,Sun Zhijian,Ye Yuehua.Research on appli‐cation of synchronous and asynchronous floating in oxi‐dizing copper mine[J].Nonferrous Metals(Mineral Pro‐cessing Section),2013(Supp.):67-69.
    [15]唐平宇,王素,田江涛,等.山西某难选氧化铜矿选矿试验研究[J].有色金属(选矿部分),2013(5):10-13.Tang Pingyu,Wang Su,Tian Jiangtao,et al.Experiment study on mineral processing of a refractory oxide copper ore of Shanxi[J].Nonferrous Metals(Mineral Processing Section),2013(5):10-13.
    [16]朱建光,朱一民.浮选药剂的同分异构原理和混合用药[M].长沙:中南大学出版社,2011:303-311.Zhu Jianguang,Zhu Yimin.Principle of Isomerism and Mixture of Floating Pharmaceutical[M].Changsha:Cen‐tral South University Press,2011:303-311.
    [17]周源,艾光华.提高某难选氧化铜矿石铜回收率的试验研究[J].金属矿山,2005,35(10):44-46.Zhou Yuan,Ai Guanghua.Test on improving copper re‐covery of a refractory copper oxide ore[J].Metal Mine,2005,35(10):44-46.
    [18]熊文良.印尼某氧化铜矿选矿试验研究[J].金属矿山,2011,40(9):94-96.Xiong Wenliang.Beneficiation study on a copper oxide ore from Indonesia[J].Metal Mine,2011,40(9):94-96.
    [19]张二林,朱雅卓,胡波,等.西藏地区某高泥质氧化铜矿选矿试验研究[J].湖南有色金属,2015,31(5):16-18,41.Zhang Erlin,Zhu Yazhuo,Hu Bo,et al.Experiment study on a high-pelitic copper oxide in Tibet[J].Hunan Nonfer‐rous Metals,2015,31(5):16-18,41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700