用户名: 密码: 验证码:
页岩油探井现场地质评价实验流程与技术进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental procedures of well-site geological evaluation for shale oil and related technological progress
  • 作者:蒋启贵 ; 黎茂稳 ; 钱门辉 ; 鲍云杰 ; 刘鹏 ; 陶国亮 ; 马晓潇 ; 李志明 ; 曹婷婷 ; 吴世强
  • 英文作者:Jiang Qigui;Li Maowen;Qian Menhui;Bao Yunjie;Liu Peng;Tao Guoliang;Ma Xiaoxiao;Li Zhiming;Cao Tingting;Wu Shiqiang;Wuxi Research Institute of Petroleum Geology,Petroleum Exploration and Production Research Institute,SINOPEC;State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development;State Energy Center for Shale Oil Research and Development;Key Laboratory of Petroleum Accumulation Mechanisms,SINOPEC;Research Institute of Exploration and Development,Jianghan Oilfield Branch Company,SINOPEC;
  • 关键词:岩石热解 ; 实验流程 ; 测试技术 ; 现场实验 ; 快速地质评价 ; 页岩油
  • 英文关键词:Rock-Eval pyrolysis;;experimental workflow;;testing technique;;well-site experiment;;rapid geological evaluation;;shale oil
  • 中文刊名:石油与天然气地质
  • 英文刊名:Oil & Gas Geology
  • 机构:中国石化石油勘探开发研究院无锡石油地质研究所;页岩油气富集机理与有效开发国家重点实验室;国家能源页岩油研发中心;中国石化油气成藏重点实验室;中国石化江汉油田分公司勘探开发研究院;
  • 出版日期:2019-04-17 10:57
  • 出版单位:石油与天然气地质
  • 年:2019
  • 期:03
  • 基金:国家科技重大专项(2017ZX05049001)
  • 语种:中文;
  • 页:125-136
  • 页数:12
  • CN:11-4820/TE
  • ISSN:0253-9985
  • 分类号:P618.13
摘要
页岩油勘探钻完井过程中需要及时对页岩含油性及页岩油的可动性进行快速评价,而已有的现场评价技术主要适用于常规砂岩储层,难于满足页岩非均质性描述的需求,迫切需要建立针对性的实验技术序列。根据页岩油探井现场快速地质评价客观需求,结合实验仪器的客观技术指标,提出了现场实验项目、取样保存和实验技术流程,并开展了现场技术方法实验和应用研究,研制磁流体变密度岩石总体积测试装置,解决了易松散形变页岩难于取柱塞样而无法及时获取物性参数的难题,建立了无固定形状页岩物性分析技术;采用液氮冷冻密闭粉碎制样技术避免轻烃损失,岩石热解分析数据更为真实;优化现场测试项目之间以及现场和实验室分析项目之间的衔接,实验支撑更为高效。新技术在江汉盆地潜江组、济阳坳陷沙河街组和鄂尔多斯盆地延长组七段应用效果显著,为陆相页岩油勘探快速地质评价提供了科学依据。同时也需要指出,中国目前页岩油勘探现场实验技术还不完善,还没有相应的规范标准,下一步攻关方向应该是,在完善现场实验技术和应用技术的基础上,形成规范的方法技术体系,搭建页岩油勘探快速地质评价技术平台。
        In the drilling and completion process of a shale oil exploration well,it is necessary to evaluate the oil-bearing property and movability of shale oil in time. However,the existing well-site evaluation techniques are developed primarily for conventional sandstone reservoirs,thus cannot meet the requirements of shale heterogeneity description. Therefore,it is in urgent need to establish a specific experimental procedure for shale oil drilling. In accordance with the requirements of rapid well-site geological evaluation and the technical limitations of available instrumentations,we proposed item selection,sampling,sample preservation and technical workflow for on-site experiment. Furthermore,this workflow was tested and applied in several well-site operations. A magnetohydrodynamic variable density rock bulk volume testing device was developed to solve the problem that it is hard to rapidly measure physical properties due to the difficulty to sample plungers for shales prone to loose and deform. In addition,a technique was invented to analyze the physical properties of shales with no fixed geometry. In order to minimize the evaporative loss of light hydrocarbons and to make Rock-Eval pyrolysis analysis data more reliable,shale samples were ground in liquid nitrogen freezing instruments. Analytical programs for wellsite and lab tests were optimized and synergized to ensure more efficient workflow. These new methods were applied successfully to the Qianjiang Formation in Jianghan Basin,Shahejie Formation in Jiyang Depression and Chang 7 in Ordos Basin,laying a sound foundation for fast geological evaluation of continental shale oil exploration. Meanwhile,what should be pointed out is that the current well-site experimental technology is still far from perfect for China's shale oil exploration,for instance,a lack of related specifications and criteria. What we should do further is to improve the existing wellsite experimental and applied technologies,develop normative methodology and technology systems,and build a rapid geological evaluation platform for shale oil exploration.
引文
[1]贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-136.Jia Chengzao,Zheng Min,Zhang Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development,2012,39(2):129-136.
    [2]卢双舫,薛海涛,王民,等.页岩油评价中的若干关键问题及研究趋势[J].石油学报,2016,37(10):1309-1322.Lu Shuangfang,Xue Haitao,Wang Min,et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica,2016,37(10):1309-1322.
    [3]邹才能,杨智,崔景伟,等.页岩油形成机制、地质特征及发展对策[J].石油勘探与开发,2013,40(1):14-26.Zou Caineng,Yang Zhi,Cui Jingwei,et a1. Formation mechanism,geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development,2013,40(1):14-26.
    [4]盛湘,陈祥,章新文,等.中国陆相页岩油开发前景与挑战[J].石油实验地质,2015,37(3):267-271.Sheng Xiang,Chen Xiang,Zhang Xinwen,et al. Prospects and challenges of continental shale oil developm ent in China[J]. Petroleum Geology&Experiment,2015,37(3):267-271.
    [5]魏亚强,李国敏,董艳辉.三维激光扫描与气体置换联合测定岩石有效孔隙率[J].地质科技情报,2015,34(4):212-216.Wei Yaqiang,Li Guoming,Dong Yanhui. Determinating Effective Porosity by the Combination of Three-Dimensional Laser Scanning and Gas Displacement[J]. Geological Science and Technology Information,2015,34(4):212-216.
    [6] Jansen J H F,Van der Gaast S J,Koster B,et al. CORTEX,a shipboard XRF-scanner for element analyses in split sediment cores[J].Marine Geology,1999,1151(1-4):143-153.
    [7] Rimmer S M. Geochemical paleoredox indicators in Devonian—Missis—sippian black shales,Central Appalachian Basin(USA)[J].Chemical Geology,2004,206(3-4):373-391.
    [8]牛强,曾溅辉,王鑫,等. X射线元素录井技术在胜利油区泥页岩脆性评价中的应用[J].油气地质与采收率,2014,21(1):24-27.Niu Qiang,Zeng Jianhui,Wang Xin,et al. Application of X-ray element logging technology in brittleness evaluation of shale in Shengli Oil Region[J]. Petroleum Geology and Recovery Efficiency,2014,21(1):24-27.
    [9] Rowe H,Hughes N,Robinson K. The quantification and application of handheld energy—dispersive X-ray fluorescence(ED—XRF)in mudrock chemostratigraphy and geochemistry[J]. Chemical Geology,2012,324-325:122-131.
    [10]马晓潇,黎茂稳,庞雄奇,等.手持式X荧光光谱仪在济阳坳陷古近系陆相页岩岩心分析中的应用[J].石油实验地质,2016,38(2):278-286.Ma Xiaoxiao,Li Maowen,Pang Xiongqi,et al. Application of handheld X·-ray fluorescence spectrometry in the core analysis of Paleogene lacustrine shales in the Jiyang Depression[J]. Petroleum Geology&Experiment,2016,38(2):278-286.
    [11] ORR W L. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation-Study of Big Horn Basin Palaeozoic oils[J]. American Association of Petroleum Geologists Bulletin,1974,50:2295-2318.
    [12] Bo Barker J. Mineralization of organic matter in the sea bed-the role ofsulphate reduction[J]. Nature,1982,296:643-645.
    [13] Machel H G,Krouse H R,Sassen R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction[J]. Applied Geochemistry,1995,10(4):373-389.
    [14]王志战.定量荧光录井技术应用研讨[J].录井技术,2002,13(1):35-40.Wang Zhizhan. Application and discussion of quantitative fluorescence logging technology[J]. Logging Technology,2002,13(1):35-40,2002,13(1):35-40.
    [15]陈俊男.三维定量荧光录井技术探讨[J].录井工程,2005,16(2):5-10.Chen Junnan. The application of 3 D quantitative fluorescence logging technology[J]. Logging Engineering,2005,16(2):5-10.
    [16]兰晶晶,熊亭,陈伟.三维定量荧光录井技术在渤海湾盆地A油田的应用[J].录井工程,2016,27(2):15-19.Lan Jingjing,Xiong Ting,Chen Wei. Application of three-dimensional quantitative fluorescence logging technology in A oilfield of Bohai Bay Basin[J]. Logging Engineering,2016,27(2):15-19.
    [17] Jarvie D M. Components and processes affecting producibility and commerciality of shale resource system[C]∥International Symposium on Shale Oil Technologies. Wuxi ALAGO Special Publication,2012.
    [18]蒋启贵,黎茂稳,钱门辉,等.不同赋存状态页岩油定量表征技术与应用研究[J].石油实验地质,2016,38(6):842-849.Jiang Qigui,Li Maowen,Qian Menhui,et al. Quantitative characterization of shale oil in different occurrence states and its application.Petroleum Geology&Experiment,2016,38(6):842-849.
    [19]薛海涛,田善思,王伟明,等.页岩油资源评价关键参数———含油率的校正[J].石油与天然气地质,2016,37(1):15-22.Xue Haitao,Tian Shansi,Wang Weiming. et al. Correction of oil content—one key parameter in shale oil resource assessment[J]. Oil&Gas Geology,2016,37(1):15-22.
    [20]李进步,卢双舫,陈国辉,等.热解参数S1的轻烃与重烃校正及其意义———以渤海湾盆地大民屯凹陷E2s4(2)段为例[J].石油与天然气地质,2016,37(4):538-545.Li Jinbu,Lu Shuangfang,Chen Guohui,et al. Correction of light and heavy hydrocarbon loss for residual hydrocarbon S1 and its significance to assessing resource potential of E2s4(2)member in Damintun Sag,Bohai Bay Basin[J]. Oil&Gas Geology,2016,37(4):538-545.
    [21] Jarvie D M. Shale resource systems for oil and gas:Part 2-Shale-oil resource systems[C]∥Shale reservoirs-Giant resources for the 21st century us:2012.
    [22] Lopatin N V,Zubairaev S L,Kos I M,et al. Unconventional oil accumulations in the Upper Jurassic Bazhenov black shale formation,West Siberian Basin:A self-sourced reservoir system[J]. Journal of Petroleum Geology,2003,26(2):225-44.
    [23] Chen Z,Li M,Cao T,et al. Hydrocarbon generation kinetics of a heterogeneous source rock system:-Example from the Eocene-Oligocene Shahejie Formation,Bohai Bay Basin in eastern China[J]. Energy&Fuels,2017,31(12)13291-13304.
    [24] Li M,Chen Z,Cao T,et al. Expelled oils and their impacts on RockEval data interpretation,Eocene Qianjiang Formation in Jianghan Basin,China[J]. International Journal of Coal Geology,2018,191,37-48.
    [25] Chen Z,Li M,Ma X,et al. Generation kinetics based method for correcting effects of migrated oil on Rock-Eval data-an example from the Eocene Qianjiang Formation,Jianghan Basin,China[J]. International Journal of Coal Geology,2018,195,84-101.
    [26] Li M,Chen Z,Ma X,et al. A numerical method for calculating total oil yield using a single routine Rock-Eval pyrogram,a case study of the Eocene Shahejie Formation in Dongying Depression,Bohai Bay Basin,China[J]. International Journal of Coal Geology,2018,191,49-65.
    [27] Li M,Chen Z,Ma X,et al. Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation,Jiyang Super-Depression,Bohai Bay Basin of China[J]. International Journal of Coal Geology,2019,204:130-143.
    [28]马晓潇,黎茂稳,蒋启贵,等.陆相页岩含油性的化学动力学定量评价方法.油气地质与采收率,2019,26(1),137-152.Ma,Xiaoxiao,Li Maowen,Jiang Qigui,et al. Chemical kinetic model for quantitative evaluation on oil-bearing property of lacustrine shale[J]. Petroleum Geology and Recovery Efficiency,2019,26(1),137-152.
    [29] Marshall A G,Rodgers R P. Petroleomics:Chemistry of the underworld[J]. Proceedings of the National Academy of Sciences of the United States of America,105,2008,18090-18095.
    [30] Liu P,Li M,Jiang Q,et al. Effect of secondary oil migration distance on composition of acidic NSO compounds in crude oils determined by negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry[J]. Organic Geochemistry,2015,78:23-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700