用户名: 密码: 验证码:
剪切闸板防喷器剪切钻杆断口凸起高度评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of Fracture Sectional Raised Height of the Sheared Drill Pipe in Shear Ram Blowout Preventer
  • 作者:刘冰 ; 李涛 ; 赵永杰 ; 陈金钢 ; 徐丽萍 ; 张芬娜 ; 綦耀光
  • 英文作者:LIU Bing;LI Tao;ZHAO Yongjie;CHEN Jingang;XU Liping;ZHANG Fenna;QI Yaoguang;College of Mechanical and Electronic Eng.,Shandong Univ.of Sci.and Technol.;Suzhou Dawson Drilling & Production Equipment Co.Ltd.;College of Electromechanical Eng.,China Univ.of Petroleum;
  • 关键词:剪切闸板防喷器 ; 钻杆断口 ; 凸起高度 ; 剪切试验
  • 英文关键词:shear ram blow out preventer;;drill pipe fracture section;;raised height;;shearing experiment
  • 中文刊名:工程科学与技术
  • 英文刊名:Advanced Engineering Sciences
  • 机构:山东科技大学机械电子工程学院;苏州道森钻采设备股份有限公司;中国石油大学(华东)机电工程学院;
  • 出版日期:2019-02-20 14:52
  • 出版单位:工程科学与技术
  • 年:2019
  • 期:02
  • 基金:国家油气科技重大专项资助(2016ZX05066004-002);; 中国煤炭工业协会科学技术研究指导性计划项目资助(MTKJ2016-279);; 江苏省博士后科研资助计划项目资助(1601053C)
  • 语种:中文;
  • 页:180-188
  • 页数:9
  • CN:51-1773/TB
  • ISSN:2096-3246
  • 分类号:TE921.5
摘要
被剪钻杆断口的变形程度是评价剪切闸板防喷器剪切性能的重要依据之一,直接关系到钻杆的再循环利用和作业效率,而被剪钻杆断口凸起高度又是断口变形程度的重要方面。为了对被剪钻杆断口凸起高度做出合理评估,以钻杆为研究对象,依据运动学基本规律建立剪切闸板的运动方程,综合考虑作业参数,以坐标转换公式的矩阵形式和滑移线理论为基础,分别给出由单剪切点导致被剪钻杆断口在任意时刻及最终凸起高度的理论预测式,继而确定断口凸起位置并建立冲击块导致被剪钻杆断口凸起高度的理论评估模型。用剪切闸板防喷器进行剪切CT90管的剪切试验,获得CT90管的断口数据对评估模型进行验证,结果表明所建立的评估模型与剪切试验获得的断口凸起高度的相对误差在10%以内,具有较高的可靠性和适用性。分析V型角、刃口倒角等剪切闸板冲击块关键结构参数及钻杆结构尺寸对被剪钻杆断口凸起高度的影响规律,研究表明钻杆断口凸起高度随着V型角的增大而增加,随着刃口倒角的增大呈波浪形变动,且波谷逐步增加,刃口倒角在20°时,钻杆断口凸起高度最小,钻杆断口凸起高度随着剪切点至V型角中心点的长度增加而增加。在满足井控要求的情况下,设计剪切闸板时,冲击块的刃口倒角以20°为宜,V型角越小越好并尽可能地缩短剪切点至V型角中心点的长度。钻杆断口凸起高度随着钻杆内径及壁厚的增大而增大,在满足钻采的要求下,钻杆宜选用小通径薄壁钻杆。
        The fracture sectional raised height is an important aspect of the fracture sectional deformation degree and the degree of deformation of the drill pipe fracture is an vital basis for evaluating the shear performance of the shear ram blowout preventer(BOP), which is directly related to the recycling and efficiency of the drill pipe. In order to make a reasonable assessment of the raised height of drill pipe fracture section, based on the basic laws of kinematics, the motion equations of the shear ram were established and the construction parameters were comprehensively considered. After that based on the matrix form of the coordinate conversion formula and the theory of slip line, the theoretical prediction of the fracture sectional raised height of the drill pipe caused by the single shear point at any time and the final were derived. Then the position of fracture sectional raised height of the drill pipe was identified and the evaluation model of the fracture sectional raised height of the drill pipe caused by the single shear ram was established. The shearing experiment of shear CT90 coiled tubing was carried out with a shear ram blowout preventer,and the fracture data of the CT90 coiled tubing was acquired to verify the evaluation model. The results showed that the assessment model established in this paper is close to the height of the fracture elevation obtained by the shearing test. The relative error is within 10%, with high reliability and applicability. The impact of the critical structure parameters of the shear ram impact block and drill pipe, such as V-angle and edge chamfer, on the fracture sectional raised height of the sheared drill pipe was further analyzed. The study showed that with the increase of the V-angle,the drill pipe fracture sectional raised height increases, and with the increase of edge chamfering, the height of fractured of the drill pipe changes in a wave shape, and the troughs gradually increase. When the edge chamfering angle is 20°, the height of the drill pipe fracture bulge is minimum, and the drill pipe fracture sectional raised height increasies with the increase of the length of the shear point to the center point of the Vshaped angle. In the case of meeting well control requirements, when designing the shear ram, the edge chamfer of the impact block should be20°. The smaller the V-angle, the better and shorten the length of the shear point to the V-shape as much as possible. The height of the fractured drill pipe increases with the increase of the drill pipe inner diameter and wall thickness in meeting the drilling and mining requirements, choosing smaller-diameter thinner-walled drill pipe.
引文
[1]Yuan Z,Hashemian Y,Morrell D.Ultra-deepwater blowout well control analysis under worst case blowout scenario[J].Journal of Natural Gas Science&Engineering,2015,27(1):122-129.
    [2]Li Mingshu,Lei Yuanmin.Development of surface BOPequipment for oil and gas drilling and development of electric or hydraulic control devices[J].Journal of Sichuan University(Engineering Science Edition),1999,41(2):72-78.[李明枢,雷远明.石油天然气钻探用地面防喷器电液控装置研制[J].四川大学学报(工程科学版),1999,41(2):72-78.]
    [3]Cai B,Liu Y,Zhang Y,et al.Dynamic bayesian networks based performance evaluation of subsea blowout preventers in presence of imperfect repair[J].Expert Systems with Applications,2013,40(18):7544-7554.
    [4]Cai B,Liu Y,Fan Q,et al.Performance evaluation of subsea BOP control systems using dynamic bayesian networks with imperfect repair and preventive maintenance[J].Engineering Applications of Artificial Intelligence,2013,26(10):2661-2672.
    [5]Liu Z,Liu Y,Cai B,et al.Dynamic bayesian network modeling of reliability of subsea blowout preventer stack in presence of common cause failures[J].Loss Prevention in the Process Industries,2015,38:58-66.
    [6]Wu S,Zhang L,Barros A,et al.Performance analysis for subsea blind shear ram preventers subject to testing strategies[J].Reliability Engineering&System Safety,2018,169:113-118.
    [7]Kim S,Chung S,Yang Y.Availability analysis of subsea blowout preventer using Markov model considering demand rate[J].International Journal of Naval Architecture&Ocean Engineering,2014,6(4):775-787.
    [8]Jarand F K.Reliability assessment of subsea BOP shear ram preventers[D].Trondheim:Norwegian University of Science and Technology,2015.
    [9]Han C J,Yang X,Zhang J,et al.Study of the damage and failure of the shear ram of the blowout preventer in theshearing process[J].Engineering Failure Analysis,2015,58(1):83-95.
    [10]Huang Xianping.Working mechanism of the shear ram blowout preventer and Structure Improvement[D].Chengdu:Southwest Petroleum University,2014.[黄显萍.剪切闸板防喷器工作机理分析及结构改进[D].成都:西南石油大学,2014.]
    [11]Childs G,Sattler J,Williamson R.Mini shear study for U.S.minerals management service:Requisition No.2-1011-1003[R].San Marcos:West Engineering Services Inc.,2002.
    [12]Childs G,Sattler J,Williamson R.Shear ram capabilities study for U.S.minerals management service:Requisition No.3-4025-1001[R].San Marcos:West Engineering Services Inc.,2004.
    [13]Springett F B,Ensley E T,Yenzer D,et al.Low force shear rams:The future is more[J].Engineering Failure Analysis,2011,3(11):1314-1322.
    [14]Springett F B.Low-force shear adds value to today’s BOPs[J].Drilling Contract,2011,67(2):104-115.
    [15]Tekin A.Blind shear ram blowout preventers:Estimation of shear force and optimization of ram geometry[D].Columbus:The Ohio State University,2010.
    [16]Tekin A,Choi C,Altan T,et al.Estimation of shear force for blind shear ram blowout preventers[J].Research on Engineering Structures&Materials,2015,1(1):39-51.
    [17]Koutsolelos E.Numerical analysis of a shear ram and experimental determination of fracture parameters[D].Cambrige:Massachusetts Institute of Technology,2012.
    [18]Liu Z G,Guo J Y,Cole T,et al.Force prediction in blow-out preventer shearing of drill pipes[J].Engineering Failure Analysis,2017,74:159-171.
    [19]Liu Feng.Simulation of the tube roll-cutting process and equipment design[D].Qinghuangdao:Yanshan University,2009.[刘丰.管材滚压剪切过程的数值模拟及关键设备的研究[D].秦皇岛:燕山大学,2009.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700