用户名: 密码: 验证码:
西藏甲岗雪山钨钼矿床成矿流体及成矿物质来源
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sources of Ore-Forming Fluids and Materials of Jiagangxueshan W-Mo Deposit
  • 作者:徐培言 ; 郑远川 ; 杨竹森 ; 沈阳 ; 王梓轩 ; 马睿 ; 吴昌炟
  • 英文作者:Xu Peiyan;Zheng Yuanchuan;Yang Zhusen;Shen Yang;Wang Zixuan;Ma Rui;Wu Changda;School of Earth Sciences and Resources,China University of Geosciences;Institute of Mineral Resources,Chinese Academy of Geological Sciences;
  • 关键词:成矿流体 ; 成矿物质 ; 钨矿床 ; 甲岗雪山 ; 西藏 ; 矿床
  • 英文关键词:ore-forming fluid;;ore-forming material;;tungsten deposit;;Jiagangxueshan;;Tibet;;deposits
  • 中文刊名:地球科学
  • 英文刊名:Earth Science
  • 机构:中国地质大学地球科学与资源学院;中国地质科学院矿产资源研究所;
  • 出版日期:2019-04-10 14:20
  • 出版单位:地球科学
  • 年:2019
  • 期:06
  • 基金:国家重点研发计划项目(Nos.2016YFC0600310,2016YFC0600306);; 国家重点基础研究发展计划“973”项目(No.2015CB452600);; 国家自然科学基金项目(Nos.41872083,41472076);; 中国地质调查局地质调查项目(Nos.DD20160024-07,DD20160026,DD20179172);; 基本科研业务费专项项目(No.53200859424)
  • 语种:中文;
  • 页:208-220
  • 页数:13
  • CN:42-1874/P
  • ISSN:1000-2383
  • 分类号:P618.67;P618.65
摘要
甲岗雪山钨钼矿床位于西藏自治区申扎县境内,是西藏首例云英岩型钨矿床,关于该矿床的研究对探讨区域成矿机制和指导找矿都具有重要意义.成矿作用与矿区内的二长花岗岩紧密相关,矿体主要产于岩体内部和紧邻岩体的围岩中.矿体的类型包括云英岩型和石英脉型,矿石多呈细脉状或者浸染状产在云英岩或云英岩化二长花岗岩体内部,少量呈大脉状产于围岩地层中.为了研究该矿床成矿流体及成矿物质的来源,挑选云英岩型矿体和石英脉型矿体中的黑钨矿、石英进行H、O同位素测试,挑选金属硫化物进行S、Pb同位素测试.结果显示,黑钨矿δ~(18)O_(V-SMOW)(‰)值集中在3.7~4.7;石英的δ~(18)O水值为2.0‰~4.3‰,δD值为-131‰~-84‰,表明成矿流体主要来源于脱气后的岩浆水,可能混入了极少量大气降水.矿石硫化物δ~(34)S的值为+2.2‰~+5.3‰,表明硫来自岩浆;硫化物的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb、~(208)Pb/~(204)Pb值分别为18.582 2~18.797 1、15.671 7~15.760 6、39.462 5~39.501 2,进一步表明成矿物质铅主要来源于中拉萨地体前寒武纪变质基底部分熔融产生的岩浆,可能有少量来自围岩地层.
        Jiagangxueshan W-Mo deposit, Shenzha County, is the first greisen-type W deposit in Tibet. Studying the deposit is of great significance in the regional metallogenic mechanism and prospecting. The mineralization is strongly linked with the monzogranite located in the center of the deposit, and ores usually occur in inner monzogranite or sedimentary wall rocks that are adjacent to the monzogranite. The orebody types of the deposit contain greisen-type and quartz vein-type. The majority of ores distribute in greisens and intensively greisenized monzogranites in the form of veinlets or dissemination, while the minority mainly precipitated in the sedimentary wall rocks, presenting as wide quartz veins. To investigate the sources of ore-forming fluids and materials of Jiagangxueshan W-Mo deposit, wolframites and quartzs, metal sulfides from greisen-and quartz vein-type orebodies are sellected for H, O and S-Pb isotope analysis, respectively. δ~(18) O_(V-SMOW)(‰) values of wolframite of the deposit range from 3.7-4.7. The hydrogen and oxygen isotope compositions of the quartzs selected from ores show that the δ~(18) Owatervalues of quartzs are ranging from 2.0‰-4.3‰, with the δD values range from-131‰ to-84‰. The H-O data indicate that ore-forming fluids were derived from residual magma water after degassing. δ~(34) S values of the sulfides range from +2.2‰ to +5.3‰, indicative of a magmatic source of sulfur. The values of~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb、~(208)Pb/~(204)Pb are 18.582 2-18.797 1、15.671 7-15.760 6、39.462 5-39.501 2, respectively, which further show that the ore-forming materials were derived from Precambrian metamorphic basement of the central Lhasa subterrane.
引文
Cao,H.W.,Pei,Q.M.,Zhang,S.T.,et al.,2017.Geology,Geochemistry and Genesis of the Eocene Lailishan Sn Deposit in the Sanjiang Region,SW China.Journal of Asian Earth Sciences,137:220-240.https://doi.org/10.1016/j.jseaes.2017.01.005
    Cheng,S.B.,Pang,Y.C.,Cao,L.,2008.The Genesis of Mengya’a Skarn-Type Lead-Zinc Deposit,Tibet.Geology and Mineral Resources of South China,24(3):50-56(in Chinese with English abstract).
    Clayton,R.N.,Mayeda,T.K.,1963.The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis.Geochimica et Cosmochimica Acta,27(1):43-52.https://doi.org/10.1016/0016-7037(63)90071-1
    Dong,X.,Zhang,Z.M.,Liu,F.,et al.,2011.Zircon U-Pb Geochronology of the Nyainqentanglha Group from the Lhasa Terrane:New Constraints on the Triassic Orogeny of the South Tibet.Journal of Asian Earth Sciences,42(4):732-739.https://doi.org/10.1016/j.jseaes.2011.01.014
    Fu,Q.,Xu,B.,Zheng,Y.C.,et al.,2017.Two Episodes of Mineralization in the Mengya’a Deposit and Implications for the Evolution and Intensity of Pb-Zn-(Ag)Mineralization in the Lhasa Terrane,Tibet.Ore Geology Reviews,90:877-896.https://doi.org/10.1016/j.oregeorev.2017.01.008
    Ge,L.S.,Zou,Y.L.,Xing,J.B.,et al.,2004.Discovery of the Jaggang Snow Mountain Tungsten-Molybdenum-Copper-Gold Polymetallic Occurrence in the Northern Part of the Gangdise Block,Tibet.Geological Bulletin of China,23(9):1033-1039(in Chinese with English abstract).
    He,X.X.,Zhu,X.K.,Yang,C.,et al.,2005.High-Precision Analysis of Pb Isotope Ratios Using MC-ICP-MS.Acta Geoscientia Sinica,26(Suppl.1):19-22(in Chinese with English abstract).
    Hou,Z.Q.,Cook,N.J.,2009.Metallogenesis of the Tibetan Collisional Orogen:A Review and Introduction to the Special Issue.Ore Geology Reviews,36(1-3):2-24.https://doi.org/10.1016/j.oregeorev.2009.05.001
    Hou,Z.Q.,Duan,L.F.,Lu,Y.J.,et al.,2015a.Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen.Economic Geology,110(6):1541-1575.https://doi.org/10.2113/econgeo.110.6.1541
    Hou,Z.Q.,Mo,X.X.,Yang,Z.M.,et al.,2006a.Metallogeneses in the Collisional Orogen of the Qinghai-Tibet Plateau:Tectonic Setting,Tempo-Spatial Distribution and Ore Deposit Types.Geology in China,33(2):340-351(in Chinese with English abstract).
    Hou,Z.Q.,Pan,G.T.,Wang,A.J.,et al.,2006c.Metallogenesis in Tibetan Collisional Orogenic Belt:II.Mineralization in Late-Collisional Transformation Setting.Mineral Deposits,25(5):521-543(in Chinese with English abstract).
    Hou,Z.Q.,Qu,X.M.,Yang,Z.S.,et al.,2006d.Metallogenesis in Tibetan Collisional Orogenic Belt:III.Mineralization in Post-Collisional Extension Setting.Mineral Deposits,25(6):629-651(in Chinese with English abstract).
    Hou,Z.Q.,Yang,Z.M.,Lu,Y.J.,et al.,2015b.A Genetic Linkage between Subduction-and Collision-Related Porphyry Cu Deposits in Continental Collision Zones.Geology,43(3):247-250.https://doi.org/10.1130/g36362.1
    Hou,Z.Q.,Yang,Z.S.,Xu,W.Y.,et al.,2006b.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ.Mineralization in Main Collisional Orogenic Setting.Mineral Deposits,25(4):337-358(in Chinese with English abstract).
    Hou,Z.Q.,Zheng,Y.C.,Yang,Z.M.,et al.,2013.Contribution of Mantle Components within Juvenile Lower-Crust to Collisional Zone Porphyry Cu Systems in Tibet.Mineralium Deposita,48(2):173-192.
    Huang,L.H.,2017.Geochemical Characteristics and Genesis of Enlightenment of Hahaigang W-Mo Polymetallic Deposit in Tibet(Dissertation).China University of Geosciences,Beijing(in Chinese with English abstract).
    Kapp,P.,Yin,A.,Harrison,T.M.,et al.,2005.CretaceousTertiary Shortening,Basin Development,and Volcanism in Central Tibet.Geological Society of America Bulletin,117(7):865-878.
    Li,G.M.,Zhang,L.K.,Jiao,Y.J.,et al.,2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt,Southern Tibet.Mineral Deposits,36(4):1003-1008(in Chinese with English abstract).
    Liang,W.,Zhang,L.K.,Xia,X.B.,et al.,2018.Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit,Southern Tibet,China.Earth Science,43(8):2742-2754(in Chinese with English abstract).
    Ma,W.,Liu,Y.C.,Yang,Z.S.,et al.,2017.Alteration,Mineralization,and Genesis of the Lietinggang-Leqingla PbZn-Fe-Cu-Mo Skarn Deposit,Tibet,China.Ore Geology Reviews,90:897-912.
    Matsuhisa,Y.,Goldsmith,J.R.,Clayton,R.N.,1979.Oxygen Isotopic Fractionation in the System Quartz-Albite-Anorthite-Water.Geochimica et Cosmochimica Acta,43(7):1131-1140.https://doi.org/10.1016/0016-7037(79)90099-1
    Ohmoto,H.,1972.Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits.Economic Geology,67(5):551-578.https://doi.org/10.2113/gsecongeo.67.5.551
    Ohmoto,H.,1986.Stable Isotope Geochemistry of Ore Deposits.Reviews in Mineralogy and Geochemistry,16(1):491-559.
    Pan,G.T.,Ding,J.,Yao,D.S.,et al.,2004.Guidebook of 1∶1 500 000 Geologic Map of the Qinghai-Xizang(Tibet)Plateau and Adjacent Areas.Chengdu Cartographic Press,Chengdu(in Chinese).
    Pan,G.T.,Mo,X.X.,Hou,Z.Q.,et al.,2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica,22(3):521-533(in Chinese with English abstract).
    Taylor,H.P.,1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology,69(6):843-883.https://doi.org/10.2113/gsecongeo.69.6.843
    Wang,Z.H.,Wang,K.Q.,Yu,W.Q.,et al.,2006a.Re-Os Isotopic Ages of Tungsten-Molybdenum(Bismuth)PolyMetallic Ore Deposit in the Jiagang Snowy Mountain,Shenzha County,Tibet and the Implications.Geology of Anhui,16(2):112-115,119(in Chinese with English abstract).
    Wang,Z.H.,Wu,X.Q.,Wang,K.Q.,et al.,2006b.Geochemical Characteristics of the Garuo Monzogranite in the Jaggang Xueshan W-Mo(-Bi)District,Southwestern Xainza,Tibet,China.Geological Bulletin of China,25(12):1487-1491(in Chinese with English abstract).
    Wang,Z.H.,Wu,X.Q.,Wang,K.Q.,et al.,2007.Stable Isotope and Ore Genesis of Jiagangxueshan W-Mo-Bi Polymetallic Deposit,Shenzha County,Tibet.Geology and Prospecting,43(3):6-10(in Chinese with English abstract).
    Wei,W.F.,Hu,R.Z.,Bi,X.W.,et al.,2012.Infrared Microthermometric and Stable Isotopic Study of Fluid Inclusions in Wolframite at the Xihuashan Tungsten Deposit,Jiangxi Province,China.Mineralium Deposita,47(6):589-605.https://doi.org/10.1007/s00126-011-0377-0
    Wu,C.D.,Zheng,Y.C.,Zhang,S.,et al.,2015.Ar-Ar Age of Biotite from the Nuri Cu-W-Mo Deposit in Tibet,and Its Geodynamic Significance.Acta Geologica Sinica,89(9):1673-1682(in Chinese with English abstract).
    Wu,K.X.,Hu,R.Z.,Bi,X.W.,et al.,2002.Ore Lead Isotopes as a Tracer for Ore-Forming Material Sources:A Review.Geology Geochemistry,30(3):73-81(in Chinese with English abstract).
    Xu,P.Y.,Zheng,Y.C.,Fu,Q.,et al.,2017.Geology of the Jiagangxueshan W-Mo Polymetallic Deposit:The First Greisen-Type W Deposit in Tibet.Acta Petrologica et Mineralogica,36(2):227-240(in Chinese with English abstract).
    Yang,Z.M.,Hou,Z.Q.,White,N.C.,et al.,2009.Geology of the Post-Collisional Porphyry Copper-Molybdenum Deposit at Qulong,Tibet.Ore Geology Reviews,36(1-3):133-159.https://doi.org/10.1016/j.oregeorev.2009.03.003
    Yang,Z.M.,Lu,Y.J.,Hou,Z.Q.,et al.,2015.High-Mg Diorite from Qulong in Southern Tibet:Implications for the Genesis of Adakite-Like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens.Journal of Petrology,56(2):227-254.https://doi.org/10.1093/petrology/egu076
    Yin,A.,Harrison,T.M.,2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences,28(1):211-280.https://doi.org/10.1146/annurev.earth.28.1.211
    Zartman,R.E.,Doe,B.R.,1981.Plumbotectonics:The Model.Tectonophysics,75(1-2):135-162.
    Zhang,L.G.,1987.Oxygen Isotope Studies of Wolframite in Tungsten Ore Deposits of South China.Geochimica,16(3):233-242(in Chinese with English abstract).
    Zhang,L.G.,Liu,J.X.,Chen,Z.S.,et al.,1994.Experimental Investigations of Oxygen Isotope Fractionation in Cassiterite and Wolframite.Economic Geology,89(1):150-157.https://doi.org/10.2113/gsecongeo.89.1.150
    Zhang,Z.M.,Dong,X.,Geng,G.S.,et al.,2010.Precambrian Metamorphism of the Northern Lhasa Terrane,South Tibet and Its Tectonic Implications.Acta Geologica Sinica,84(4):449-456(in Chinese with English abstract).
    Zhang,Z.M.,Kang,D.Y.,Ding,H.X.,et al.,2018.Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites.Earth Science,43(1):82-98(in Chinese with English abstract).
    Zhao,X.Y.,Yang,Z.S.,Zheng,Y.C.,et al.,2015.Geology and Genesis of the Post-Collisional Porphyry-Skarn Deposit at Bangpu,Tibet.Ore Geology Reviews,70:486-509.https://doi.org/10.1016/j.oregeorev.2014.09.014
    Zheng,Y.C.,Fu,Q.,Hou,Z.Q.,et al.,2015.Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-WPolymetallic Belt in the Lhasa Terrane,Southern Tibet.Ore Geology Reviews,70:510-532.
    Zheng,Y.C.,Hou,Z.Q.,Li,Q.Y.,et al.,2012a.Origin of Late Oligocene Adakitic Intrusives in the Southeastern Lhasa Terrane:Evidence from In-Situ Zircon U-Pb Dating,HfO Isotopes,and Whole-Rock Geochemistry.Lithos,148:296-311.https://doi.org/10.1016/j.lithos.2012.05.026
    Zheng,Y.C.,Hou,Z.Q.,Li,W.,et al.,2012b.Petrogenesis and Geological Implications of the Oligocene Chongmuda-Mingze Adakite-Like Intrusions and Their Mafic Enclaves,Southern Tibet.The Journal of Geology,120(6):647-669.https://doi.org/10.1086/667812
    Zheng,Y.C.,Liu,S.A.,Wu,C.D.,et al.,2019.Cu Isotopes Reveal Initial Cu Enrichment in Sources of Giant Porphyry Deposits in a Collisional Setting.Geology,47(2):135-138.https://doi.org/10.1130/g45362.1
    Zheng,Y.F.,2001.Theoretical Modeling of Stable Isotope Systems and Its Applications to Geochemistry of Hydrothermal Ore Deposits.Mineral Deposits,20(1):57-70,85(in Chinese with English abstract).
    Zheng,Y.F.,Fu,B.,Zhang,X.H.,1996.Effects of Magma Degassing on the Carbon and Sulfur Isotope Compositions of Igneous Rocks.Chinese Journal of Geology,31(1):43-53(in Chinese with English abstract).
    Zhu,D.C.,Pan,G.T.,Wang,L.Q.,et al.,2008.Tempo-Spatial Variations of Mesozoic Magmatic Rocks in the Gangdise Belt,Tibet,China,with a Discussion of Geodynamic Setting-Related Issues.Geological Bulletin of China,27(9):1535-1550(in Chinese with English abstract).
    Zhu,D.C.,Zhao,Z.D.,Niu,Y.L.,et al.,2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters,301(1-2):241-255.
    程顺波,庞迎春,曹亮,2008.西藏蒙亚啊矽卡岩铅锌矿床的成因探讨.华南地质与矿产,24(3):50-56.
    葛良胜,邹依林,邢俊兵,等,2004.西藏冈底斯地块北部甲岗雪山钨钼铜金多金属矿产地的发现及意义.地质通报,23(9):1033-1039.
    何学贤,朱祥坤,杨淳,等,2005.多接收器等离子体质谱(MC-ICP-MS)Pb同位素高精度研究.地球学报,26(增刊1):19-22.
    侯增谦,莫宣学,杨志明,等,2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质,33(2):340-351.
    侯增谦,曲晓明,杨竹森,等,2006d.青藏高原碰撞造山带:III.后碰撞伸展成矿作用.矿床地质,25(6):629-651.
    侯增谦,潘桂棠,王安建,等,2006c.青藏高原碰撞造山带:II.晚碰撞转换成矿作用.矿床地质,25(5):521-543.
    侯增谦,潘桂棠,王安建,等,2006c.青藏高原碰撞造山带:II.晚碰撞转换成矿作用.矿床地质,25(5):521-543.
    侯增谦,杨竹森,徐文艺,等,2006b.青藏高原碰撞造山带:I.主碰撞造山成矿作用.矿床地质,25(4):337-358.
    黄礼恒,2017.西藏哈海岗钨钼多金属矿床地球化学特征及成因启示(硕士学位论文).北京:中国地质大学.
    李光明,张林奎,焦彦杰,等,2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质,36(4):1003-1008.
    梁维,张林奎,夏祥标,等,2018.藏南地区错那洞钨锡多金属矿床地质特征及成因.地球科学,43(8):2742-2754.
    潘桂棠,丁俊,姚冬生,等,2004.青藏高原及邻区地质图(1∶1 500 000).成都:成都地图出版社.
    潘桂棠,莫宣学,侯增谦,等,2006.冈底斯造山带的时空结构及演化.岩石学报,22(3):521-533.
    王治华,王科强,喻万强,等,2006a.西藏申扎县甲岗雪山钨钼(铋)多金属矿床的Re-Os同位素年龄及其意义.安徽地质,16(2):112-115,119.
    王治华,吴兴泉,王科强,等,2006b.西藏申扎西南部甲岗雪山钨钼(铋)矿区嘎若二长花岗岩体的地球化学特征.地质通报,25(12):1487-1491.
    王治华,吴兴泉,王科强,等,2007.西藏申扎县甲岗雪山钨、钼、铋多金属矿床稳定同位素地球化学特征及矿床成因探讨.地质与勘探,43(3):6-10.
    吴昌炟,郑远川,张松,等,2015.冈底斯南缘努日Cu-W-Mo多金属矿床黑云母Ar-Ar定年及其地质意义.地质学报,89(9):1673-1682.
    吴开兴,胡瑞忠,毕献武,等,2002.矿石铅同位素示踪成矿物质来源综述.地质地球化学,30(3):73-81.
    徐培言,郑远川,付强,等,2017.西藏首例云英岩型钨矿:甲岗雪山W-Mo多金属矿床地质特征研究.岩石矿物学杂志,36(2):227-240.
    张理刚,1987.华南钨矿床黑钨矿的氧同位素研究.地球化学,16(3):233-242.
    张泽明,董昕,耿官升,等,2010.青藏高原拉萨地体北部的前寒武纪变质作用及构造意义.地质学报,84(4):449-456.
    张泽明,康东艳,丁慧霞,等,2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学,43(1):82-98.
    郑永飞,2001.稳定同位素体系理论模式及其矿床地球化学应用.矿床地质,20(1):57-70,85.
    郑永飞,傅斌,张学华,1996.岩浆去气作用碳硫同位素效应.地质科学,31(1):43-53.
    朱弟成,潘桂棠,王立全,等,2008.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报,27(9):1535-1550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700