用户名: 密码: 验证码:
新疆火烧云超大型非硫化物铅锌矿床:发生表生氧化的密西西比河谷型矿床
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The World-Class Huoshaoyun Nonsulfide Zinc-Lead Deposit, Xinjiang,NW China: Formation by Supergene Oxidization of a Mississippi Valley-Type Deposit
  • 作者:吴志旖 ; 宋玉财 ; 侯增谦 ; 刘英超 ; 庄亮亮
  • 英文作者:Wu Zhiyi;Song Yucai;Hou Zengqian;Liu Yingchao;Zhuang Liangliang;School of Earth Sciences and Resources,China University of Geosciences;Institute of Geology,Chinese Academy of Geological Sciences;
  • 关键词:菱锌矿 ; 白铅矿 ; 方铅矿 ; 台地碳酸盐岩 ; 密西西比河谷型 ; 表生氧化 ; 火烧云 ; 矿床
  • 英文关键词:smithsonite;;cerussite;;galena;;platform carbonate;;MississippiValley-type;;supergene oxidization;;Huoshaoyun;;deposits
  • 中文刊名:地球科学
  • 英文刊名:Earth Science
  • 机构:中国地质大学地球科学与资源学院;中国地质科学院地质研究所;
  • 出版日期:2018-11-29 09:56
  • 出版单位:地球科学
  • 年:2019
  • 期:06
  • 基金:国家重点研发计划项目(No.2016YFC0600306);; 国家自然科学基金项目(Nos.41773043,41320104004,41773042,41772088,91855214);; 国土资源大调查项目(No.DD20160024-02)资助
  • 语种:中文;
  • 页:221-231
  • 页数:11
  • CN:42-1874/P
  • ISSN:1000-2383
  • 分类号:P618.42;P618.43
摘要
火烧云矿床是我国新发现具有超大型规模的非硫化物铅锌矿床,成因倍受关注.矿床主要由菱锌矿和白铅矿组成,形成块状及少量纹层状和角砾状矿石,构成了层状矿体.赋矿围岩为中侏罗统含沉积石膏的台地相碳酸盐岩,为密西西比河谷型矿床的典型赋矿围岩,而非喷流沉积型矿床的赋矿围岩.矿石中普遍出现被白铅矿交代的方铅矿残留,表明原生矿化为硫化物.方铅矿δ~(34)S_(V-CDT)值为-34‰~-18‰,显示还原硫的来源与细菌还原作用作用有关,这在MVT矿床中较为常见,而在与岩浆作用有关的铅锌矿床中少见.同时,矿床也不具有与岩浆有关的热液矿化和蚀变特征,故矿床的原生硫化物矿化应为MVT型.通过菱锌矿和白铅矿的O同位素组成,计算出形成这两种矿物的流体具有低温、低δ~(18)O值的大气降水的特征,结合白铅矿交代方铅矿的这一现象,表明目前观察到的由菱锌矿和白铅矿构成铅锌矿体系是在表生作用下直接交代原生硫化物矿体形成.
        Huoshaoyun is a newly discovered world-class nonsulfide zinc-lead deposit in Xinjiang, NW China, so its genesis attracts many geologists' attentions. Conformable orebodies in the deposit contain massive and minor stratiform and breccia-hosted ores that are dominated by smithsonite and cerussite. Ores are hosted by Middle Jurassic sedimentary gypsum-bearing platform facies carbonate. Clearly, the carbonate is typical host for Mississippi Valley-type(MVT) deposit rather than for sedimentary exhalative(SEDEX) deposit. Galena is common in the ores and was replaced by cerussite, implying that precursor mineralization in the deposit was zinc and lead sulfides. δ~(34) S_(V-CDT)values of the galena range from-34‰ to-18‰, indicating that derivation of reduced sulfur was related to bacterial sulfate reduction(BSR) process, which is common in MVT deposits but is scarce in magmatic-related Zn-Pb deposits. Together with the absence of magmatic-related hydrothermal alteration and mineralization, it suggests that primary mineralization at Huoshaoyun is of MVT origin. Oxygen isotopic compositions of water that reached isotopic equilibrium with smithsonite and cerussite are low in temperature and light in δ~(18) O values, implyimg that meteoric water was involved in the two mineral formations. Combined with the observation that galena was replaced by cerussite, we suggest that the smithsonite and cerussite were the result of intensive supergene oxidization of primary znic and lead sulfides of MVT origin.
引文
Boni,M.,Gilg,H.A.,Balassone,G.,et al.,2007.Hypogene Zn Carbonate Ores in the Angouran Deposit,NW Iran.Mineralium Deposita,42,799-820.
    Brugger,J.,McPhail,D.C.,Wallace,M.,et al.,2003.Formation of Willemite in Hydrothermal Environments.Economic Geology,98(4):819-835.https://doi.org/10.2113/gsecongeo.98.4.819
    Dong,L.H.,Xu,X.W.,Fan,T.B.,et al.,2015.Discovery of the Huoshaoyun Super-Large Exhalative-Sedimentary Carbonate Pb-Zn Deposit in the Western Kunlun Area and Its Great Significance for Regional Metallogeny.Xinjiang Geology,33(1):41-50(in Chinese with English abstract).
    Fan,T.B.,Yu,Y.J.,Xia,M.Y.,et al.,2017.Geological Features and Prospecting for the Huoshaoyun Pb-Zn Deposit in Hotan,Xinjiang.Acta Geologica Sichuan,37(4):578-582(in Chinese with English abstract).
    Gao,Y.B.,Teng,J.X.,Li,K.,et al.,2017.Metallogenic Characteristics and Genesis of the Huoshaoyun Superlarge Lead-Zinc Deposit in Karakorum.Acta Mineralogica Sinica,37(Suppl.):561-562(in Chinese).
    Gilg,H.A.,Boni,M.,Hochleitner,R.,et al.,2008.Stable Isotope Geochemistry of Carbonate Minerals in Supergene Oxidation Zones of Zn-Pb Deposits.Ore Geology Reviews,33(2):117-133.https://doi.org/10.1016/j.oregeorev.2007.02.005
    Hitzman,M.W.,2003.Classification,Genesis,and Exploration Guides for Nonsulfide Zinc Deposits.Economic Geology,98(4):685-714.https://doi.org/10.2113/98.4.685
    Hou,Z.Q.,Cook,N.J.,2009.Metallogenesis of the Tibetan Collisional Orogen:A Review and Introduction to the Special Issue.Ore Geology Reviews,36(1-3):2-24.
    Hou,Z.Q.,Song,Y.C.,Li,Z.,et al.,2008.Thrust-Controlled,Sediments-Hosted Pb-Zn-Ag-Cu Deposits in Eastern and Northern Margins of Tibetan Orogenic Belt:Geological Features and Tectonic Model.Mineral Deposits,27(2):123-144(in Chinese with English abstract).
    Huang,Q.F.,Lu,Y.,2016.Analysis of Geological Characteristics and Genesis of Hotan Huoshaoyun Lead-Zinc Deposit.Resource Information and Engineeing,31(4):3-5(in Chinese with English abstract).
    Jin,H.Z.,2018.Analysis of Metallogenic Condition and Prospecting Potential of Lead-Zinc Deposit in TianshuihaiHuoshaoyun Area,Karakoram.Journal of Geology,42(1):17-22(in Chinese with English abstract).
    Leach,D.L.,Bradley,D.C.,Huston,D.,et al.,2010.SedimentHosted Lead-Zinc Deposits in Earth History.Economic Geology,105:593-625.https://doi.org/10.2113/gsecongeo.105.3.593
    Leach,D.L.,Sangster,D.F.,Kelley,K.D.,et al.,2005.Sediment-Hosted Lead-Zinc Deposit:A Global Perspective.Economic Geology,100:561-607.
    Li,X.F.,Zhang,M.J.,Li,Y.J.,et al.,2012.Characteristics ofδ18O in Precipitation and Moisture Transports over the Arid Region in Northwest China.Environmental Science,33(3):711-719(in Chinese with English abstract).
    Ohmoto,H.,1996.Formation of Volcanogenic Massive Sulfide Deposits:The Kuroko Perspective.Ore Geology Reviews,10(3-6):135-177.https://doi.org/10.1016/0169-1368(95)00021-6
    Ohmoto,H.,Rye,R.O.,1979.Isotopes of Sulfur and Carbon.In:Barnes,H.L.,ed.,Geochemistry of Hydrothermal Ore Deposits.Wiley,New York,509-567.
    Reichert,J.,Borg,G.,2008.Numerical Simulation and a Geochemical Model of Supergene Carbonate-Hosted NonSulphide Zinc Deposits.Ore Geology Reviews,33(2):134-151.https://doi.org/10.1016/j.oregeorev.2007.02.006
    Song,Y.C.,Hou,Z.Q.,Liu,Y.C.,et al.,2017.Mississippi Valley-Type(MVT)Pb-Zn Deposits in the Tethyan Domain:A Review.Geology in China,44(4):664-689(in Chinese with English abstract).
    Song,Y.C.,Hou,Z.Q.,Yang,T.N.,et al.,2011.SedimentHosted Himalayan Base Metal Deposits in Sanjiang Region:Characteristics and Genetic Types.Acta Petrologica et Mineralogica,30(3):355-380(in Chinese with English abstract).
    Spurlin,M.S.,Yin,A.,Horton,B.K.,et al.,2005.Structural Evolution of the Yushu-Nangqian Region and Its Relationship to Syncollisional Igneous Activity,East-Central Tibet.Geological Society of America Bulletin,117(9):1293.https://doi.org/10.1130/b25572.1
    Taylor,H.P.,1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology,69(6):843-883.
    Xiao,W.J.,Li,J.L.,Hou,Q.L.,et al.,1998.Structural Styles of the Southeastern West Kunlun Mountains and Their Implication to Growing-Arc Orogenesis.Chinese Journal of Geophysics,41(Suppl.):133-141(in Chinese with English abstract).
    Yi,A.,2001.Geologic Evolution of the Himalayan-Tibetan Orogen in the Context of Phanerozoic Continental Growth of Asia.Acta Geoscientia Sinica,22(3):193-230(in Chinese with English abstract).
    Zhang,Z.D.,Zeng,Y.C.,1988.The Division and Evolution of Tectonic Area in Western Kunlun Mt.-Karakorum Mt.Xinjiang Geology,6(1):60-72(in Chinese with English abstract).
    Zhao,D.D.,Chen,H.L.,Yang,S.F.,et al.,2000.Structural Styles of the Foreland Fold and Thrust Belt in the Tianshuihai Area,Western Kunlun,and Its Tectonic Evolution.Acta Geologica Sinica,74(2):134-141(in Chinese with English abstract).
    Zhou,M.L.,Liu,Y.C.,2018.The Sachakou Deposit in West Kunlun of Xinjiang:A Pb-Zn Polymetallic Deposit Associated with Magmatic Metasomatism of Carbonate Rock.Acta Geologica Sinica(English Edition),92(2):883-884.https://doi.org/10.1111/1755-6724.13572
    董连慧,徐兴旺,范廷宾,等,2015.喀喇昆仑火烧云超大型喷流-沉积成因碳酸盐型Pb-Zn矿的发现及区域成矿学意义.新疆地质,33(1):41-50.
    范廷宾,余元军,夏明毅,等,2017.新疆和田县火烧云铅锌矿地质特征及其找矿.四川地质学报,37(4):578-582.
    高永宝,滕家欣,李侃,2017.喀喇昆仑火烧云超大型铅锌矿床成矿特征与成因.矿物学报,37(增刊):561-562.
    侯增谦,宋玉财,李政,等,2008.青藏高原碰撞造山带Pb-ZnAg-Cu矿床新类型:成矿基本特征与构造控矿模型.矿床地质,27(2):123-144.
    黄清凤,陆勇,2016.新疆和田县火烧云铅锌矿地质特征及成因分析.资源信息与工程,31(4):3-5.
    晋红展,2018.喀喇昆仑甜水海-火烧云一带铅锌矿成矿条件及找矿潜力.地质学刊,42(1):17-22.
    李小飞,张明军,李亚举,等,2012.西北干旱区降水中δ18O变化特征及其水汽输送.环境科学,33(3):711-719.
    宋玉财,侯增谦,刘英超,等,2017.特提斯域的密西西比河谷型(MVT)铅锌矿床.中国地质,44(4):664-689.
    宋玉财,侯增谦,杨天南,等,2011.“三江”喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型.岩石矿物学杂志,30(3):355-380.
    肖文交,李继亮,侯泉林,等,1998.西昆仑东南构造样式及其对增生弧造山作用的意义.地球物理学报,41(增刊1):133-141.
    尹安,2001.喜马拉雅-青藏高原造山带地质演化:显生宙亚洲大陆生长.地球学报,22(3):193-230.
    张志德,曾亚参,1988.西昆仑山-喀喇昆仑山的构造分区及其演化.新疆地质,6(1):60-67.
    赵冬冬,陈汉林,杨树锋,等,2000.西昆仑甜水海地区前陆褶皱冲断带的构造样式及其演化.地质学报,74(2):134-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700