用户名: 密码: 验证码:
幕阜山南缘似斑状黑云母花岗岩锆石U-Pb年龄、Hf同位素组成及其地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Zircon U-Pb age and Hf isotopic composition of porphyaceous biotite granite in south margin of Mufushan and their geological implications
  • 作者:许畅 ; 李建 ; 施光海 ; 李鹏 ; 刘翔 ; 张立平
  • 英文作者:XU Chang;LI JianKang;SHI GuangHai;LI Peng;LIU Xiang;ZHANG LiPing;MNR Key Laboratory of Metallogeny and Mineral Resource Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences;School of Gemology, China University of Geosciences;Hunan Nuclear Geology;No.311 Brigade of Hunan Nuclear Geology;
  • 关键词:地球化学 ; 锆石U-Pb定年 ; Hf同位素 ; 幕阜山复式岩体 ; 稀有金属成矿 ; 冷家溪群
  • 英文关键词:geochemistry;;zircon U-Pb age;;Hf isotopic composition;;Mufushan composite granite mass;;rare metal mineralization;;Lengjiaxi Group
  • 中文刊名:矿床地质
  • 英文刊名:Mineral Deposits
  • 机构:自然资源部成矿作用与资源评价重点实验室中国地质科学院矿产资源研究所;中国地质大学珠宝学院;湖南省核工业地质局;湖南省核工业地质局311大队;
  • 出版日期:2019-10-15
  • 出版单位:矿床地质
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金面上项目(编号:41872096);; 中国地质调查局项目(编号:DD20160056);; 中央级公益性科研院所基本科研业务费(编号:JYYWF201814);; 湖南省核工业地质局科研基金(编号:KY2016-311-01);; 湖南省国土资源厅科研项目(编号:2018-02)联合资助
  • 语种:中文;
  • 页:122-137
  • 页数:16
  • CN:11-1965/P
  • ISSN:0258-7106
  • 分类号:P588.121;P597.3;P612
摘要
幕阜山复式花岗岩基南缘的长庆黑云母花岗岩与其内部Be伟晶岩呈渐变接触关系,为Be伟晶岩的母岩,其成岩时代及同位素特征可指示幕阜山地区黑云母花岗岩阶段的Be成矿时代及成矿物质来源。本次研究对长庆地区的似斑状黑云母二长花岗岩进行了LA-ICP-MS锆石U-Pb定年和Hf同位素组成测试,结果显示,该岩体成岩年龄为(142.9±0.9)Ma,代表了幕阜山复式花岗岩体黑云母花岗岩演化阶段的稀有金属成矿时代,此次成矿为华南地区中生代大规模成岩成矿作用的组成部分;继承锆石核的存在表明区域可能存在古老基底。长庆地区似斑状黑云母二长花岗岩的εHf(t)值主要变化于-9.2~-5.5,二阶段模式年龄主要为1.6~1.8 Ga,与幕阜山岩体不同类型花岗岩的εHf(t)和Hf同位素TDM2相近,暗示它们的源岩具有相似源区特征,为同源岩浆不同演化阶段的产物。此外,长庆似斑状黑云母二长花岗岩的源区物质中还有少量古元古代壳源物质(εHf(t)=-16)和新元古代地层物质加入,反映源区物质的复杂性。结合区域内其他年代学与同位素研究资料,表明幕阜山地区伟晶岩稀有金属成矿作用发生于早白垩世,岩浆连续分异演化过程中伴随着多阶段稀有金属成矿作用,最早在黑云母花岗岩阶段开始出现Be矿化,之后随着岩浆的分异演化程度不断增高,矿化规模越来越大,矿种由单一元素(Be)向综合演化(Be-Nb-Ta-Li)。成矿物质来源方面,幕阜山岩体锆石的TDM2与冷家溪群的锆石Hf同位素二阶段模式年龄的一个峰值(1.7~2.0 Ga)接近,表明二者的源岩在此时同时脱离地幔形成,为幕阜山岩体形成于冷家溪群部分熔融提供了支持,冷家溪群可能为稀有金属成矿提供了主要的物质来源。
        The Changqing porphyaceous biotite granite in the south margin of Mufushan shows gradual contact with the Be pegmatite inside, which suggests that the granite is the parent rock of the pegmatite. Therefore, the forming age and isotopic compositions of the granite could reveal the epoch and material source of Be mineralization relating to biotite granite in Mufushan. In this research, the LA-ICP-MS was employed for U-Pb dating and Hf isotopic compositions of zircon grains from porphyaceous biotite monzonitic granite in Changqing. The result shows that the forming age of the granite is(142.9±0.9) Ma. This age could be interpreted as the rare metal mineralization age referring to biotite granite of Mufushan composite granite mass, suggesting that the mineralization is part of Mesozoic large-scale diagenesis-mineralization in South China. The inherited core in zircon indicates that there is probably an old base in Mufushan. The εHf(t) and Hf two-stage model age TDM2 of the Changqing granite mainly range from-9.2 to-5.5 and from 1.6 to 1.8 Ga, respectively, corresponding to those of various granites in Mufushan batholith, which suggests these granites, whose source rocks share similar sources, result from homologous magma with different evolution levels. Besides, it also shows that there are also materials derived from Paleoproterozoic crust(εHf(t)=-16) and Neoproterozoic sedimentary strata in the source of the studied granite,regarded as a proof of muti-source. Together with previously published data, it's indicated that the rare metal mineralization in pegmatite of Mufushan was in Early Cretaceous. During magma evolution, there were multistage rare metal mineralization, starting at Be mineralization connected with biotite granite, and then developing into larger scale and richer minerals(Be-Nb-Ta-Li) as magma evolved. The TDM2 of zircons from Mufushan batholith is close to one of peaks of that of zircons from Lengjiaxi Group(1.7~2.0 Ga), which means their source rocks were separated from the mantle simultaneously. It supports the hypothesis that the Mufushan granitoids were derived from partial melting of Neoproterozoic Lengjiaxi Group, which may provide significant ore-forming source for rare metal mineralization.
引文
Abart R,Heuser D and Habler G.2014.Mechanisms of myrmekite formation:Case study from the Weinsberg granite,Moldanubian zone,Upper Austria[J].Contributions to Mineralogy and Petrology,168(5):1074.
    Abu El-Rus M A,Mohamed M A and Lindh A.2017.Mueilha rare metals granite,eastern desert of Egypt:An example of a magmatic-hydrothermal system in the Arabian-Nubian Shield[J].Lithos,294-295:362-382.
    Amelin Y,Lee D C and Halliday A N.2000.Early-Middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J].Geochimica et Cosmochimica Acta,64(24):4205-4225.
    Bai D Y,Huang J Z,Liu Y R,Wu G Y,Ma T Q and Wang X H.2005.Framework of Mesozoic tectonic evolution in southeastern Hunan and the Hunan-Guangdong-Jiangxi border area[J].Geology in China,32(4):557-570(in Chinese with English abstract).
    Belousova E A,Griffin W L,O’Reilly S Y and Fisher N I.2002.Igneous zircon:Trace element composition as an indicator of source rock type[J].Contributions to Mineralogy and Petrology,143(5):602-622.
    ?ernyP.1991.Rare-element granite pegmatites.Part I:Anatomy and internal evolution of pegmatite deposits[J].Geoscience Canada,18(2):49-67.
    Chappell B W and White A J R.2001.Two contrasting granite types:25 years later[J].Australian Journal of Earth Sciences,48(4):489-499.
    Fu J M,Ma C Q,Xie C F,Zhang Y M and Peng S B.2004.Shrimp U-Pb zircon dating of the Jiuyishan composite granite in Hunan and its geological significance[J].Geotectonica et Metallogenia,28(4):370-378(in Chinese with English abstract).
    Fu Z R,Li Z J and Zheng D Y.1999.Structural pattern and tectonic evolution of NNE-trending strike-slip orogenic belt in the border region of Hunan and Jiangxi Provinces[J].Earth Science Frontiers,6(4):263-273(in Chinese with English abstract).
    Gao L Z,Chen J,Ding X Z,Liu Y R,Zhang C H,Zhang H,Liu Y X,Pang W H and Zhang Y H.2011.Zircon shrimp U-Pb dating of the tuff bed of Lengjiaxi and Banxi Groups,northeastern Hunan:Constraints on the Wuling movement[J].Geological Bulletin of China,30(7):1001-1008(in Chinese with English abstract).
    Griffin W L,Wang X,Jackson S E,Pearson N J,O’Reilly S Y,Xu X Sand Zhou X M.2002.Zircon chemistry and magma genesis,SEChina:In-situ analysis of Hf isotopes,Tonglu and Pingtan igneous complexes[J].Lithos,61(3):237-269.
    He Z L,Xu D R,Chen G H,Xia B,Li P C and Fu G G.2004.Gold polymetallic ore forming geochemistry of Yanshanian intracontinental collision orogen,northeastern Hunan Province[J].Mineral Deposits,23(1):39-51(in Chinese with English abstract).
    Hoskin P W O and Black L P.2000.Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J].Journal of Metamorphic Geology,18(4):423-439.
    Ji W B,Lin W,Faure M,Chen Y,Chu Y and Xue Z H.2017.Origin of the Late Jurassic to Early Cretaceous peraluminous granitoids in the northeastern Hunan Province(Middle Yangtze region),South China:Geodynamic implications for the Paleo-Pacific subduction[J].Journal of Asian Earth Sciences,141:174-193.
    Li J K,Wang D H,Zhang D H and Fu X F.2007.The forming mechanism and continental dynamics background of pegmatite deposits in western Sichuan[M].Beijing:Atomic Energy Publishing House.1-154(in Chinese).
    Li J W,Li X F,Li Z J and Fu Z R.1999.Fluid inclusions study in the process of strike slip faulting-A case study in eastern Hunan Province[J].Geotectonica et Metallogenia,23(3):240-247(in Chinese with English abstract).
    Li P,Li J K,Liu S B,Pei R F and Shi G H.2017.Origin and geological significance of TTG gneisses from the Maevatanana greenstone belt in north-central Madagascar,and a comparison with India[J].Acta Geologica Sinica(English Edition),91(3):1003-1024.
    Li P,Li J K,Pei R F,Leng S L,Zhang X,Zhou F C and Li S M.2017.Multistage magmatic evolution and cretaceous peak metallogenic epochs of Mufushan composite granite mass:Constrains from geochronological evidence[J].Earth Science,42(10):1684-1696(in Chinese with English abstract).
    Li P,Liu X,Li J K,Huang Z B,Zhou F C and Zhang L P.2019.Petrographic and geochemical characteristics of Renli-Chuanziyuan No.5 pegmatite,NE Hunan,and its metallogenic age[J].Acta Geologica Sinica,93(6):1374-1391(in Chinese with English abstract).
    Li P C.2006.Magmatism of Phanerozoic granitoids in southeastern Hunan Province,China and its evolution regularity(doctoral dissertation)[D].Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences.1-101(in Chinese with English abstract).
    Liu X,Zhou F C,Huang Z B,Li J K,Zhou H X,Xiao G Q,Bao Y H,Li P,Tan L M,Shi W K,Su J N,Huang X Q,Chen H,Wang X M,Lin Y and Liu X M.2018.Discovery of Renli superlarge pegmatite-type Nb-Ta polymetallic deposit in Pingjiang,Hunan Province and its significances[J].Geotectonica et Metallogenia,42(2):235-243(in Chinese with English abstract).
    Liu Y,Hou Z Q,Tian S H,Zhang Q C,Zhu Z M and Liu J H.2015.Zircon U-Pb ages of the Mianning-Dechang syenites,Sichuan Province,southwestern China:Constraints on the giant REEmineralization belt and its regional geological setting[J].Ore Geology Reviews,64(8),554-568.
    London D.2017.Reading pegmatites:Part 3-what lithium minerals say[J].Rocks&Minerals,92(2):144-157.
    London D.2018.Ore-forming processes within granitic pegmatites[J].Ore Geology Reviews,101:349-383.
    Meng Q X,Zhang J,Geng J Z,Zhang C L and Huang W C.2013.Zircon U-Pb age and Hf isotope compositions of Lengjiaxi and Baxi Groups in middle Hunan Province:Implications for the Neoproterozoic tectonic evolution in South China[J].Geology in China,40(1):191-216(in Chinese with English abstract).
    Miller C F.1985.Are strongly peralumious magmas derived from politic sedimentary sources[J]?The Journal of Geology,93(6):673-689.
    No.701 Brigade of Ministry of Geology.1965.A survey report on rare metal minerals in the granite area of Mufushan[R].Beijing:No.701 Brigade of Ministry of Geology.1-176(in Chinese).
    Patinˇo Douce A E and Johnston A D.1991.Phase equilibria and melt productivity in the pelitic system:Implications for the origin of peraluminous granitoids and aluminous granulites[J].Contributions to Mineralogy and Petrology,107(2):202-218.
    Peng H Q,Jia B H and Tang X S.2004.Uplift process of Mufushan and thermochronology of Wangxiang granites in northeastern Hunan Province[J].Geological Science and Technology Information,23(1):11-15(in Chinese with English abstract).
    Rong J S.1992.On the origin of myrmekite[J].Acta Petrologica et Mineralogica,11(4):324-331+383(in Chinese with English abstract).
    Ryan J G.2002.Trace-element systematics of beryllium in terrestrial materials[J].Reviews in Mineralogy and Geochemistry,50(1):121-145.
    Scherer E E,Cameron K L and Blichert-Toft J.2000.Lu-Hf garnet geochronology:Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions[J].Geochimica et Cosmochimica Acta,64(19):3413-3432.
    Schmidt K,Bau M,Hein J R and Koschinsky A.2014.Fractionation of the geochemical twins Zr/Hf and Nb/Ta during scavenging from sea water by hydrogenetic ferromanganese crusts[J].Geochimica et Cosmochimica Acta,140:468-487.
    Shearer C K,Papike J J and Jolliff B L.1992.Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system,Black Hills,South Dakota[J].Canadian Mineralogist,30:785-809.
    Shi H C,Shi X B,Yang X Q and Jiang H Y.2013.The exhumation process of Mufushan granite in Jiangnan uplift since Cenozoic:Evidence from low-temperature thermochronolgy[J].Chinese Journal of Geophysics,56(6):1945-1957(in Chinese with English abstract).
    Shu Z X,Zhang D X,Lu A H and Gu X P.2015.The geochemical characteristics of Mufushan composite granite mass in northwestern Hunan and its implication for ore prospecting[J].Acta Mineralogica Sinica,35(S1):240(in Chinese).
    Sylvester P J.1998.Post-collisional strongly peraluminous granites[J].Lithos,45(1-4):29-44.
    Vervoort J D and Patchett P J.1996.Behavior of hafnium and neodymium isotopes in the crust:Constraints from Precambrian crustal derived granites[J].Geochimica et Cosmochimica Acta,60(19):3717-3733.
    Wang J Q,Shu L S and Santosh M.2016.Petrogenesis and tectonic evolution of Lianyunshan complex,South China:Insights on Neoproterozoic and late Mesozoic tectonic evolution of the central Jiangnan Orogen[J].Gondwana Research,39:114-130.
    Wang J Q,Shu L S and Santosh M.2017.U-Pb and Lu-Hf isotopes of detrital zircon grains from Neoproterozoic sedimentary rocks in the central Jiangnan Orogen,South China:Implications for Precambrian crustal evolution[J].Precambrian Research,294:175-188.
    Wang L X,Ma C Q,Zhang C,Zhang J Y and Marks M A W.2014.Genesis of leucogranite by prolonged fractional crystallization:Acase study of the Mufushan complex,South China[J].Lithos,206-207:147-163.
    Wang Y B,Wang D H,Han J,Lei Z H,Chen Z H,Qu W J,Xu Y M,Zi B Z and Wang Q L.2010.U-Pb dating and Hf isotopic characteristics of zircons and Re-Os dating of molybdenite from Gao'aobei tungsten-molybdenum deposit,southern Hunan Province[J].Geological Review,56(6):820-830(in Chinese with English abstract).
    Wu F Y,Yang Y H,Xie L W,Yang J H and Xu P.2006.Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J].Chemical Geology,234(1-2):105-126.
    Wu F Y,Li X H,Zheng Y F and Gao S.2007.Lu-Hf isotopic systematics and their applications in petrology[J].Acta Petrologica Sinica,23(2):185-220(in Chinese with English abstract).
    Xiao Y P,Zhou F C,Chen H and Li Z H.2017.Kernel in the mining area in Hunan Province in the kernel ore block of tantalum niobium ore mineralization geological features[J].World Nonferrous Metals,(8):23-24(in Chinese with English abstract).
    Yuan Y B,Yuan S D,Chen C J and Huo R.2014.Zircon U-Pb ages and Hf isotopes of the granitoids in the Huangshaping mining area and their geological significance[J].Acta Petrologica Sinica,30(1):64-78(in Chinese with English abstract).
    Yuguchi T and Nishiyama T.2008.The mechanism of myrmekite formation deduced from steady-diffusion modeling based on petrography:Case study of the Okueyama granitic body,Kyushu,Japan[J].Lithos,106(3):237-260.
    Zhao K D,Jiang S Y,Jiang Y H and Liu D Y.2006.SHRIMP U-Pb dating of the Furong unit of Qitangling granite from southeast Hunan Province and their geological implications[J].Acta Petrologica Sinica,22(10):2611-2616(in Chinese with English abstract).
    Zheng J H and Guo C L.2012.Geochronology,geochemistry and zircon Hf isotopes of the Wangxianling granitic intrusion in South Hunan Province and its geological significance[J].Acta Petrologica Sinica,28(1):75-90(in Chinese with English abstract).
    Zhou F C,Liu X,Li J K,Huang Z B,Xiao G Q,Li P,Zhou H X,Shi W K,Tan L M,Su J N,Chen H and Wang X M.2019.Metallogenic characteristics and prospecting direction of Renli superlarge rare metal deposit in Hunan Province,China[J].Geotectonica et Metallogenia,43(1):77-91(in Chinese with English abstract).
    Zhu Q B,Yang K G and Cheng W Q.2011.Structural evolution of northern Jiangnan Uplift:Evidence from ESR dating[J].Geoscience,25(1):31-38(in Chinese with English abstract).
    柏道远,黄建中,刘耀荣,伍光英,马铁球,王先辉.2005.湘东南及湘粤赣边区中生代地质构造发展框架的厘定[J].中国地质,32(4):557-570.
    地质部701地质队.1965.1∶5万幕阜山花岗岩区稀有金属矿产普查报告[R].北京:地质部701地质队.1-176.
    付建明,马昌前,谢才富,张业明,彭松柏.2004.湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义[J].大地构造与成矿学,28(4):370-378.
    傅昭仁,李紫金,郑大瑜.1999.湘赣边区NNE向走滑造山带构造发展样式[J].地学前缘,6(4):263-273.
    高林志,陈峻,丁孝忠,刘耀荣,张传恒,张恒,刘燕学,庞维华,张玉海.2011.湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄--对武陵运动的制约[J].地质通报,30(7):1001-1008.
    贺转利,许德如,陈广浩,夏斌,李鹏春,符巩固.2004.湘东北燕山期陆内碰撞造山带金多金属成矿地球化学[J].矿床地质,23(1):39-51.
    李建康,王登红,张德会,付小方.2007.川西伟晶岩型矿床的形成机制及大陆动力学背景[M].北京:原子能出版社.1-154.
    李建威,李先福,李紫金,傅昭仁.1999.走滑变形过程中的流体包裹体研究--以湘东地区为例[J].大地构造与成矿学,23(3):240-247.
    李鹏,李建康,裴荣富,冷双梁,张旭,周芳春,李胜苗.2017.幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰:年代学依据[J].地球科学,42(10):1684-1696.
    李鹏,刘翔,李建康,黄志飚,周芳春,张立平.2019.湘东北仁里-传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代[J].地质学报,93(6):1374-1391.
    李鹏春.2006.湘东北地区显生宙花岗岩岩浆作用及其演化规律(博士论文)[D].导师:陈广浩,牛贺才.广州:中国科学院广州地球化学研究所.1-101.
    刘翔,周芳春,黄志飚,李建康,周厚祥,肖国强,包云河,李鹏,谭黎明,石威科,苏俊男,黄小强,陈虎,汪宣民,林跃,刘晓敏.2018.湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义[J].大地构造与成矿学,42(2):235-243.
    孟庆秀,张健,耿建珍,张传林,黄文成.2013.湘中地区冷家溪群和板溪群锆石U-Pb年龄、Hf同位素特征及对华南新元古代构造演化的意义[J].中国地质,40(1):191-216.
    彭和求,贾宝华,唐晓珊.2004.湘东北望湘岩体的热年代学与幕阜山隆升[J].地质科技情报,23(1):11-15.
    戎嘉树.1992.蠕英石的成因[J].岩石矿物学杂志,11(4):324-331+383.
    石红才,施小斌,杨小秋,蒋海燕.2013.江南隆起带幕阜山岩体新生代剥蚀冷却的低温热年代学证据[J].地球物理学报,56(6):1945-1957.
    束正祥,张德贤,鲁安怀,谷湘平.2015.湘东北幕阜山岩体地质地球化学特征及其找矿指示意义[J].矿物学报,35(S1):240.
    王彦斌,王登红,韩娟,雷泽恒,陈郑辉,屈文俊,许以明,资柏忠,王清利.2010.汝城高坳背钨-钼矿区花岗岩锆石U-Pb年龄、Hf同位素及矿石辉钼矿Re-Os年龄[J].地质论评,56(6):820-830.
    吴福元,李献华,郑永飞,高山.2007.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,23(2):185-220.
    肖亚鹏,周芳春,陈虎,李振红.2017.湖南省仁里矿区仁里矿段钽铌矿成矿地质特征的探讨[J].世界有色金属,(8):23-24.
    原垭斌,袁顺达,陈长江,霍然.2014.黄沙坪矿区花岗岩类的锆石U-Pb年龄、Hf同位素组成及其地质意义[J].岩石学报,30(1):64-78.
    赵葵东,蒋少涌,姜耀辉,刘敦一.2006.湘南骑田岭岩体芙蓉超单元的锆石SHRIMP U-Pb年龄及其地质意义[J].岩石学报,22(10):2611-2616.
    郑佳浩,郭春丽.2012.湘南王仙岭花岗岩体的锆石U-Pb年代学、地球化学、锆石Hf同位素特征及其地质意义[J].岩石学报,28(1):75-90.
    周芳春,刘翔,李建康,黄志飚,肖国强,李鹏,周厚祥,石威科,谭黎明,苏俊男,陈虎,汪宣民.2019.湖南仁里超大型稀有金属矿床的成矿特征与成矿模型[J].大地构造与成矿学,43(1):77-91.
    朱清波,杨坤光,程万强.2011.江南隆起带北缘新生代构造演化的石英ESR年代学研究[J].现代地质,25(1):31-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700