用户名: 密码: 验证码:
有机氮和“三氮”在西部煤矿区地下水库迁移转化的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Migration and transformation regulation of organic and inorganic nitrogen in a western coal mine groundwater reservoir
  • 作者:张庆 ; 罗绍河 ; 赵丽 ; 王世东 ; 田云飞 ; 张垒 ; 孟嘉馨 ; 张智吉
  • 英文作者:ZHANG Qing;LUO Shaohe;ZHAO Li;WANG Shidong;TIAN Yunfei;ZHANG Lei;MENG Jiaxin;ZHANG Zhiji;Department of Resource & Environmental Engineering,Henan Polytechnic University;Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region;Key Laboratory of Mine Geological Hazards Mechanism and Control;CCTEG Xi'an Research Institute;
  • 关键词:保水采煤 ; 西部煤矿区 ; 地下水库 ; 矿井水 ; 有机氮 ; 无机氮 ; 煤矸石
  • 英文关键词:water-preserved coal mining;;western mining areas;;groundwater reservoir;;coal mine water;;organic nitrogen;;inorganic nitrogen;;coal gangue;;migration and transformation
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:河南理工大学资源环境学院;中原经济区煤层(页岩)气河南省协同创新中心;矿山地质灾害成灾机理与防控重点实验室;中煤科工集团西安研究院有限公司;
  • 出版日期:2019-03-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金资助项目(41402216);; 2019年度河南省高等学校重点科研资助项目(19A170008);; 矿山地质灾害成灾机理与防控重点实验室开放课题资助项目(KF2018-06)
  • 语种:中文;
  • 页:240-246
  • 页数:7
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:X752
摘要
基于浅埋深、薄基岩、厚煤层的赋存条件,在我国西部煤矿区往往排出富含有机氮和无机氮(硝酸盐氮、亚硝酸盐氮或氨氮)的矿井水,如果不经过处理就直接排放,会给生态环境带来严重危害。作为实现保水采煤、生态保护的措施之一,地下水库技术已在我国多个西部生态脆弱煤矿区得到了实施,然而有关水质保障及安全运行的研究报道甚少。研究通过矸石柱模拟补连塔矿地下水库的水文地质环境,结合水中TN、"三氮"等理化指标的测试,开展了矿井水中有机氮和"三氮"的迁移转化规律研究。研究结果表明:渗流流量均值0.51 mL/min、1 016 h(12.54个孔隙体积数PV)内,在模拟的水-岩间的缺氧环境中,同时存在有机氮的矿化作用、亚硝酸盐及硝酸盐的反硝化作用。在实验初期的1.19~2.47 PV,有机氮浓度快速下降,而氨氮浓度快速上升,这说明试验初期有机氮的氨化作用较强。之后有机氮的矿化作用逐渐减弱,导致水中氨氮含量逐渐减小并趋于稳定。在矿井水C/N为2.32~3.08的条件下,较强的还原作用导致亚硝酸盐的去除率在99.9%以上、硝酸盐的去除效率在74%~90%。矿井水TN的去除效率在57%~71%,由于淋滤用液硝酸盐含量较低,因此TN的去除主要与亚硝酸盐的减少有关。有机物降解过程低分子量有机酸的生成使得水中H~+含量升高、淋出液pH值始终低于淋滤用液。研究结果可为地下水库技术的有效实施提供水质保障和安全运行方面的借鉴。
        Based on the occurrence conditions of shallow buried depth,thin bedrock and thick coal seam in western coal mine areas,the contents of organic and inorganic nitrogen(NO_3~--N,NO_2~--N or NH_4~+-N)in mine water are oftenhigh.If it is directly discharged without treatment,the ecological environment will be damaged seriously.As one of the water-preserved mining and ecological protection measures,groundwater reservoir technology has been implemented in many ecologically fragile coal mining areas in Western China.However,there are few reports on water quality and safe operation during the water storage in a groundwater reservoir.Column experiments were carried out to study the migration and transformation regulation of organic and inorganic nitrogen in the simulated groundwater reservoir packed with coal gangue in Bulianta Coal Mine,combining with the test of total nitrogen(TN),NO_3~--N,NO_2~--N,NH_4~+-N and other physicochemical parameters.The results showed that the mineralization of organic nitrogen and denitrification of nitrite and nitrate occurred simultaneously in the simulated anoxic water-rock environment at an average seepage flow rate of 0.51 m L/min during the test duration of 1 016 h(12.54 pore volume).During 1.19-2.47 PV at the beginning of experiments,the concentration of organic nitrogen in the effluent decreased rapidly while the concentration of ammonia nitrogen increased rapidly,indicating the strengthened ammonification of organic nitrogen at the initial stage of the experiment.Thereafter,the mineralization of organic nitrogen got gradually weakened.Thus the content of ammonia nitrogen in the effluent decreased gradually and tended to be stable.With the ration of organic carbon to nitrogen(C/N)ranging from 2.32 to 3.08 in the studied mine water,the removal efficiencies of nitrate and nitrite were 74%-90% and>99.9%individually,suggesting the strong reduction action.Because of the low nitrate content in the input solution,the removal of TN with the efficiency ranging from 57% to 71%was mainly related to the reduction of nitrite.The formation of organic acids with low molecular weight during the degradation of organic matter,such as ammonification of organic nitrogen,induced the increase of H~+ in the mine water.Consequently,the pH value in the eluted solution was always lower than that in the input mine water during the column experiment.The findings could provide a theoretical support for the effective implementation of groundwater reservoir technology in terms of water quality assurance and safe operation.
引文
[1]顾大钊.能源“金三角”煤炭现代开采水资源及地表生态保护技术[J].中国工程科学,2013,15(4):102-107.GU Dazhao.Water resource and surface ecology protection technology of modern coal mining in China’s energy Golden Triangle[J].Engineering Sciences,2013,15(4):102-107.
    [2]陈苏社.神东矿区井下采空区水库水资源循环利用关键技术研究[D].西安:西安科技大学,2016.CHEN Sushe.Research on the key technology of water resources recycling utilization in the underground goaf reservoir in shendong mining area[D].Xi’an:Xi’an University of Science and Technology,2016.
    [3]谢和平,王金华.中国煤炭科学产能[M].北京:煤炭工业出版社,2014.
    [4]赵丽,孙艳芳,杨志斌,等.煤矸石去除矿井水中水溶性有机物及氨氮的实验研究[J].煤炭学报,2018,43(1):236-241.ZHAO Li,SUN Yanfang,YANG Zhibin,et al.Removal efficiencies of dissolved organic matter and ammonium in coal mine water by coal gangue through column experiments[J].Journal of China Coal Society,2018,43(1):236-241.
    [5]何绪文,杨静,邵立南,等.我国矿井水资源化利用存在的问题与解决对策[J].煤炭学报,2008,33(1):63-66.HE Xuwen,YANG Jing,SHAO Linan,et al.Problem and counter measure of mine water resource regeneration in China[J].Journal of China Coal Society,2008,33(1):63-66.
    [6]马淑学.浅析神东矿区矿井水处理[J].陕西煤炭,2014,33(5):78-80.MA Shuxue.Solving the problems of mine water by means of management and technology[J].Shaanxi Coal,2014,33(5):78-80.
    [7]刘永娟,韩宝平,曹建军.神东矿井污水的开发与利用[J].污染防治技术,2003,16(4):88-91.LIU Yongjuan,HAN Baoping,CAO Jianjun.Study on exploitation and utilization of mine wastewater[J].Pollution Control Technology,2003,16(4):88-91.
    [8]曹海东,刘峰,李泉.神东矿区矿井水开发利用潜力研究[J].煤炭工程,2010,1(1):95-98.CAO Haidong,LIU Feng,LI Quan.Study on development and utilization potential of mine water in Shendong Mining Area[J].Coal Engineering,2010,1(1):95-98.
    [9]范立民.保水采煤的科学内涵[J].煤炭学报,2017,42(1):27-35.FAN Limin.Scientific connotation of water-preserved mining[J].Journal of China Coal Society,2017,42(1):27-35.
    [10]武强,申建军,王洋.“煤-水”双资源型矿井开采技术方法与工程应用[J].煤炭学报,2017,42(1):8-16.WU Qiang,SHEN Jianjun,WANG Yang.Mining techniques and engineering application for“Coal-Water”dual-resources mine[J].Journal of China Coal Society,2017,42(1):8-16.
    [11]FAN L M,MA X D.A review on investigation of water-preserved coal mining in western China[J].International Journal of Coal Science&Technology,2018,5(4):411-416.
    [12]钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529-534.QIAN Minggao.On sustainable coal mining in Chain[J].Journal of China Coal Society,2010,35(4):529-534.
    [13]赵丽,田云飞,王世东,等.煤矸石中溶解性有机质(DOM)溶出的动力学变化[J].煤炭学报,2017,42(9):2455-2461.ZHAO Li,TIAN Yunfei,WANG Shidong,et al.Dynamic changes of dissolved organic matter(DOM)from coal gangue[J].Journal of China Coal Society,2017,42(9):2455-2461.
    [14]梁冰,汪北方,姜利国,等.浅埋采空区垮落岩体碎胀特性研究[J].中国矿业大学学报,2016,45(3):475-482.LIANG Bing,WANG Beifang,JIANG Liguo,et al.Broken expand properties of caving rock in shallow buried goaf[J].Journal of China University of Mining&Technology,2016,45(3):475-482.
    [15]何绪文,李焱,邵立南,等.模拟矿井采空区水处理试验[J].煤炭科学技术,2009,37(3):106-108.HE Xuwen,LI Yan,SHAO Linan,et al.Water treatment experiment on simulated mine goaf[J].Coal Science and Technology,2009,37(3):106-108.
    [16]黄俊雄,邓寅生,张新.煤矸石填充煤矿采空区的环境影响试验研究[J].水文地质工地质,2005,32(2):68-70.HUANG Junxiong,DENG Yinsheng,ZHANG Xin.Experiment study of environmental impact during underground filling the goaf with gangues[J].Hydrogeology Engineering Geology,2005,32(2):68-70.
    [17]田云飞.补连塔矿区煤矸石对矿井水中溶解性有机物的去除效果研究[D].焦作:河南理工大学,2018.TIAN Yunfei.Study on removal efficiency of dissolved organic matter in mine water by coal gangue in Bulianta mining area[D].Jiaozuo:Henan Polytechnic University,2018.
    [18]王明仕,刘琳瑶,宋党育.煤矸石-粉煤灰烧结砖中微量元素的浸出特征研究[J].河南理工大学学报(自然科学版),2016,35(6):823-827.WANG Mingshi,LIU linyao,SONG Dangyu.Leaching characteristics of trace elements in the sintered brick made from coal gangue and fly ash[J].Journal of Henan Polytechnic University(Natural Science),2016,35(6):823-827.
    [19]CHUN J A,COOKE R A,EHEART J W,et al.Estimation of flow and transport parameters for woodchip-based bioreactors:I.laboratory-scale bioreactor[J].Biosystems Engineering,2009,104(6):384-395.
    [20]BRUNET R C,ASTIN K B,DARTIGUELONGUE S,et al.The mineralization of organic nitrogen:Relationship with variations in the water-table within a floodplain of the river adour in southwest France[J].Water Resources Management,2008,22(11):277-289.
    [21]DEMPSTER D N,JONES D L,MURPHY D V.Organic nitrogen mineralization in two contrasting agro-ecosystems is unchanged by biochar addition[J].Soil Biol.Biochem,2012,48(3):47-50.
    [22]弓爱军,刘杰民,王海鸥.环境化学[M].北京:化学工业出版社,2016.
    [23]钱会,马致远.水文地球化学[M].北京:地质出版社,2005.
    [24]LI J Z,MENG J,LI J L,et al.The effect and biological mechanism of COD/TN ratio on nitrogen removal in a novel up flow microaerobic sludge reactor treating manure-free piggery wastewater[J].Bioresource Technology,2016,209(9):360-368.
    [25]ZHAO L,ZHAO Y,WANG X Y,et al.Dynamic changes of dissolved organic matter during nitrate transport in a loose-pore geothermal reservoir[J].Chemical Geology,2018,487(5):76-85.
    [26]RIVETT M O,BUSS S R,MORGAN P,et al.Nitrate attenuation in groundwater:A review of biogeochemical controlling processes[J].Water Research,2008,42:4215-4232.
    [27]张云,张胜,刘长礼,等.包气带土层防护地下水污染的反硝化测定影响综述[J].水文地质工程地质,2010,37(2):114-119.ZHANG Yun,ZHANG Sheng,LIU Changli,et al.A review of influence of denitrification measurement in soil layers of aeration zone aimed at groundwater protection[J].Hydrogeology and Engineering Geology,2010,37(2):114-119.
    [28]周健民,沈仁芳.土壤学大辞典[M].北京:科学出版社,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700