用户名: 密码: 验证码:
玛纳斯河流域山前平原区地下水资源动态变化分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic change analysis on groundwater resources in piedmont plain of Manas River Basin
  • 作者:管春兴 ; 张虹波 ; 王战 ; 赵明 ; 张在勇
  • 英文作者:GUAN Chunxing;ZHANG Hongbo;WANG Zhan;ZHAO Ming;ZHANG Zaiyong;School of Environmental Science and Engineering,Chang'an University;Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Regin,Ministry of Education;Department of Science and Technology,Chang'an University;
  • 关键词:地下水资源 ; 玛纳斯河流域 ; 水均衡 ; 动态变化 ; 驱动力分析
  • 英文关键词:groundwater resources;;Manas River Basin;;water balance;;dynamic changes;;driving force analysis
  • 中文刊名:水利水电技术
  • 英文刊名:Water Resources and Hydropower Engineering
  • 机构:长安大学环境科学与工程学院;长安大学旱区地下水文与生态效应教育部重点实验室;长安大学科技处;
  • 出版日期:2019-03-20
  • 出版单位:水利水电技术
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金联合基金重点项目(U1603243);国家自然科学基金重点项目(41230314)
  • 语种:中文;
  • 页:4-12
  • 页数:9
  • CN:11-1757/TV
  • ISSN:1000-0860
  • 分类号:P641.8
摘要
地下水是玛纳斯河流域山前平原区的主要供水水源,该区内地下水资源动态变化的研究对于指导当地水资源合理开发利用以及生态环境保护具有重要意义。在收集流域多年研究资料的基础上,通过水均衡法评价了地下水资源量和构成,剖析了地下水资源及地下水位动态变化特征及其驱动力。结果表明:(1)自20世纪80年代以来,地下水均衡状态由正均衡演变为负均衡,地下水储存量在逐渐减少;地下水资源构成发生了变化,河道渗漏补给量、田间灌溉入渗量及渠系渗漏补给量占总补给量的比例分别由20世纪80年代的23.69%、12.03%、37.74%降低为21世纪10年代的18.36%、11.46%、36.91%,人工开采量占总排泄量的比例增加了42.94%;(2)地下水位动态监测资料表明,地下水位年内动态与河流流量、农田灌溉及地下水人工开采紧密相关,年际动态表明地下水位在过去21年内呈下降趋势,且冲洪积扇地下水位下降速率大于细土平原;(3)渠系硬质化、大面积引河水灌溉以及人工开采的增加是地下水资源量组成改变和地下水位下降的主要驱动力。该研究为玛纳斯河流域地下水资源合理开发利用提供了支持。
        Groundwater is the main resource of water supply in the piedmont plain area of Manas River Basin, so the study on the dynamic process of groundwater resources in this area is of great significance for guiding the local water resources development and the ecological environment protection. Various basic data are collected to evaluate the quantity and composition of groundwater resources by water balance method and the dynamic characteristics and driving forces of groundwater resources are analyzed. The results show that:(1) since the 1980 s, equilibrium state of the groundwater has evolved from positive balance to negative balance, and the groundwater storage is gradually decreasing; the groundwater resources composition has changed, and the proportion of the river leakage, field irrigation infiltration and canal leakage to total recharge decrease from 23.69%, 12.03% and 37.74% in 1980 s to 18.36%, 11.46% and 36.91% in the decade of the 21 st century, respectively. The proportion of artificial exploitation to total discharge increases by 42.94%;(2) dynamic monitoring data of groundwater level show that the dynamic process of groundwater level in a year is closely related to river flow, farmland irrigation and groundwater artificial exploitation, and the dynamic process for many years shows that the groundwater level has a downward trend in the past 21 years, and the downward rate of the groundwater level in alluvial fan is larger than that in fine soil plain;(3) hardening of canal system, large-scale irrigation throngh river diversion and increase of artificial exploitation are the main driving forces for the change of groundwater resources composition and the decline of groundwater level. This study provides support for the rational development and utilization of groundwater resources in Manas River Basin.
引文
[1] 王文科,宫程程,张在勇,等.旱区地下水文与生态效应研究现状与展望[J].地球科学进展,2018,33(7):702- 718.
    [2] 王玉洁,秦大河.气候变化及人类活动对西北干旱区水资源影响研究综述[J].气候变化研究进展,2017,13(5):483- 493.
    [3] 胡立堂,孙康宁,尹文杰.GRACE卫星在区域地下水管理中的应用潜力综述[J].地球科学与环境学报,2016, 38(2):258- 266.
    [4] 朱金峰,章树安,戴宁,等.地下水水资源量监测分析技术应用探讨[J].水文,2017,37(3):58- 62.
    [5] WANG W,ZHANG Z,DUAN L,et al.Response of the groundwater system in the Guanzhong Basin (central China) to climate change and human activities[J].Hydrogeology Journal,2018(13):1- 13.
    [6] VOSS K A,FAMIGLIETTI J S,LO M,et al.Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region[J].Water Resources Research,2013,49(2): 904- 914.
    [7] DANESHVAR V F,DINPASHOH Y,AALAMI M T,et al.Trend analysis of groundwater using non-parametric methods(case study: Ardabil plain)[J].Stochastic Environmental Research and Risk Assessment,2013,27(2):547- 559.
    [8] 张泽鹏,朱玉晨,郝奇琛,等.呼和浩特盆地地下水流系统变异机制及其资源效应[J].水文地质工程地质,2017,44(2):63- 68.
    [9] 张人权,梁杏,靳孟贵,等.水文地质学基础[M].北京:地质出版社,2010.
    [10] 魏玲玲.玛纳斯河流域水资源可持续利用研究[D].石河子:石河子大学,2014.
    [11] 邵景力,崔亚莉,李慈君.玛纳斯河流域山前平原地下水资源分析及合理开发利用研究[J].干旱区地理,2003,26(1):6- 11.
    [12] SHANG H M,WANG W K,DAI Z X,et al.An ecology-oriented exploitation mode of groundwater resources in the northern Tianshan Mountains,China[J].Journal of Hydrology,2016,543(8):386- 394.
    [13] 樊华,卞玮,雍会,等.新疆玛纳斯河流域绿洲生态环境可持续发展的综合评价—以石河子市绿洲为例[J].干旱区资源与环境,2007,21(9):25- 28.
    [14] YANG G,XUE L Q,HE X L,et al.Change in land use and evapotranspiration in the Manas River Basin, China with long-term water-saving measures[J].Scientific Reports,2017,7(1):17874.
    [15] 刘志明.准噶尔盆地南缘地下水循环及环境演化研究[D].南京:南京大学,2007.
    [16] 史兴民,杨景春,李有利,等.玛纳斯河流域地貌与地下水的关系[J].地理与地理信息科学,2004,20(3):56- 60.
    [17] 崔亚莉,邵景力,李慈君.玛纳斯河流域地表水、地下水转化关系研究[J].水文地质工程地质,2001,28(2):9- 13.
    [18] 杨广,陈伏龙,何新林,等.玛纳斯河流域平原区垂向交错带地下水的演变规律及驱动力的分析[J].石河子大学学报(自然科学版),2011,29(2):248- 252.
    [19] 杨广.节水条件下玛纳斯河流域水循环过程模拟研究[D].石河子:石河子大学, 2017.
    [20] 王文明.天山北麓三水转化与地下水库调蓄研究[D].西安:长安大学,2007.
    [21] 石河子-沙湾-玛纳斯区域国土资源编委会.石河子-沙湾-玛纳斯区域国土资源[M].乌鲁木齐:新疆科技卫生出版社,1995.
    [22] 杨广,何新林,李俊峰,等.玛纳斯河流域水资源可持续利用评价方法[J].生态学报,2010,31(9):2407- 2413.
    [23] 张青青,徐海量,樊自立,等.玛纳斯河流域人工绿洲扩张对社会经济和生态环境的影响分析[J].中国沙漠,2012,32(3):863- 871.
    [24] 封玲.玛纳斯河流域农业开发与生态环境变迁研究[M].北京:中国农业出版社,2006.
    [25] WANG W K,WANG Z,HOU R Z,et al.Modes,hydrodynamic processes and ecological impacts exerted by river-groundwater transformation in Junggar Basin,China[J].Hydrogeology Journal,2018,26(5):1547- 1557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700