用户名: 密码: 验证码:
不同矿化度水对煤储层吸附性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of water with different salinity on the adsorption performance of coal reservoir
  • 作者:魏迎春 ; 项歆璇 ; 王安民 ; 张强 ; 曹代勇
  • 英文作者:WEI Yingchun;XIANG Xinxuan;WANG Anmin;ZHANG Qiang;CAO Daiyong;College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing);
  • 关键词:矿化度 ; 煤储层 ; 等温吸附实验 ; 吸咐性能 ; 甲烷
  • 英文关键词:salinity;;coal reservoir;;isothermal adsorption experiment;;adsorption performance;;methane
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)地球科学与测绘工程学院;
  • 出版日期:2019-06-25 15:11
  • 出版单位:煤炭学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金资助项目(41572141,41972174);; 中国地质调查局基金资助项目(DD20160187)
  • 语种:中文;
  • 页:227-233
  • 页数:7
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:P641.4;P618.1
摘要
为了探究水分及其矿化度对煤样吸附甲烷能力的影响,以准噶尔盆地南缘玛纳斯矿区侏罗系西山窑组块状煤样为例,采用矿化度水配制—样品制备—样品大气压下水浸—高压下注水—等温吸附实验的实验步骤,开展煤样干燥、饱水及含不同矿化度水条件下煤的等温吸附实验,探讨不同矿化度水对煤储层吸附性能的影响。研究结果表明:干燥煤样的兰氏体积显著大于注蒸馏水煤样的兰氏体积,注蒸馏水煤样的兰氏体积大于注10 000 mg/L矿化度水煤样的兰氏体积,但后者与注20 000 mg/L矿化度水煤样的兰氏体积相差不大。其主要原因为注蒸馏水煤样中水分子比甲烷分子更容易占据煤基质内表面或微孔内表面的吸附位,从而使得兰氏体积降低,而含矿化度水使得煤基质表面的吸附位进一步减少,从而造成了煤样对甲烷的吸附能力降低,但这也存在着一个极限值,大于20 000 mg/L矿化度水已不能明显降低煤样的兰氏体积。因此可推断,在地下水径流区或弱径流区,煤层水的矿化度不断增大至10 000 mg/L时,煤层中处于动态平衡的游离气含量会增加,而吸附气含量会减少,当煤层水矿化度超过10 000 mg/L,煤层中吸附气与游离气的含量比例趋于稳定。实验从研究创新的角度出发,以低煤阶煤样为例,对比分析了含不同矿化度水条件下煤样对甲烷的吸附能力的差异,并且进行了相关的理论分析和机制解释,认为地下水矿化度影响煤储层对甲烷的吸附能力。
        In order to explore the influence of water and salinity on the methane adsorption capacity of coal samples,the isothermal adsorption experiments of coal samples with water saturation and water with different salinity were carried out using the coal samples from the middle Jurassic Xishanyao formation block in the Manas mining area of the southern margin of Junggar basin.The results show that the Langmuir volume of dry coal sample was significantly larger than that of distilled water injection sample,and the Langmuir volume of distilled water injection sample was larger than that of water injection coal sample with salinity being 10 000 mg/L,but the latter is close to that of water injection coal sample with salinity degree of 20 000 mg/L.The main reason is that the distilled water molecules can be more easily adsorbed on the surface of the coal matrix than methane molecules,which makes the reduction of Langmuir volume.The salinity water further reduces the adsorption sites of coal matrix surface,resulting in the reduction of methane adsorption capacity of coal samples.However,there is a limit salinity value,and the water with salinity degree greater than 20 000 mg/L cannot significantly reduce the Langmuir volume of coal samples.Therefore,it can be inferred that in the groundwater runoff area or weak runoff area,when the salinity degree of coal seam water increases continuously to 10 000 mg/L,the content of free gas in the coal seam will increase,while the content of adsorbed gas will decrease.When the salinity degree of coal seam water exceeds 10 000 mg/L,both the content ratios of adsorbed gas and free gas in coal seam tend to be stable.
引文
[1] PAN Z,CONNELL L D,CAMILLERI M,et al.Effects of matrix moisture on gas diffusion and flow in coal[J].Fuel,2010,89(11):3207-3217.
    [2] 李相方,蒲云超,孙长宇,等.煤层气与页岩气吸附/解吸的理论再认识[J].石油学报,2014,35(6):1113-1129.LI Xiangfang,PU Yunchao,SUN Changyu,et,al.Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir[J].ACTA Petrolei Sinica,2014,35(6):1113-1129.
    [3] GUO H,CHENG Y,WANG L,et al.Experimental study on the effect of moisture on low-rank coal adsorption characteristics[J].Journal of Natural Gas Science & Engineering,2015,24(4):245-251.
    [4] SCOTT A R.Hydrogeologic factors affecting gas content distribution in coal beds[J].International Journal of Coal Geology,2002,50(1):363-387.
    [5] WANG L,JIANG B.Experimental study of the effect of static water on imbibition gas recovery in coalbed methane reservoirs[J].Journal of Natural Gas Science & Engineering,2016,35:1284-1292.
    [6] CROSDALE P J,MOORE T A,MARES T E.Influence of moisture content and temperature on methane adsorption isotherm analysis for coals from a lowrank,biogenically-sourced gas reservoir[J].International Journal of Coal Geology,2008,76(1):166-174.
    [7] KROOSS B M,BERGEN F V,GENSTERBLUM Y,et al.High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J].International Journal of Coal Geology,2002,51(2):69-92,5.
    [8] 张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999,24(6):566-570.ZHANG Qun,YANG Xilu.Isothermal adsorption of coals on methane under equilibrium moisture[J].Journal of China Coal Society,1999,24(6):566-570.
    [9] 谢振华,陈绍杰.水分及温度对煤吸附甲烷的影响[J].北京科技大学学报,2007,29(S2):42-44.XIE Zhenhua,CHEN Shaojie.Effect of moisture and temperature to CH4 adsorption of coal[J].Journal of University of Science and Technology Beijing,2007,29(S2):42-44.
    [10] CHENG Yuanping,JIANG Haina,ZHANG Xiaolei,et al.Effects of coal rank on physicochemical properties of coal and on methane adsorption[J].International Journal of Coal Science & Technology,2017,4(2):129-146.
    [11] 钟玲文.煤的吸附性能及影响因素[J].地球科学,2004,29(3):327-332.ZHONG Lingwen.Adsorptive capacity of coals and its affecting factors[J].Earth Science-Journal of China University of Geosciences,2004,29(3):327-332.
    [12] 田伟兵,李爱芬,韩文成.水分对煤层气吸附解吸的影响[J].煤炭学报,2017,42(12):3196-3202.TIAN Weibing,LI Aifen,HAN Wencheng.Effect of water content on adsorption /desorption of coalbed methane[J].Journal of China Coal Society,2017,42(12):3196-3202.
    [13] 桑树勋,朱炎铭,张井,等.液态水影响煤吸附甲烷的实验研究:以沁水盆地南部煤储层为例[J].科学通报,2005,50(S1):70-75.SANG Shuxun,ZHU Yanming,ZHANG Jing,et al.Influence of liquid water on coalbed methane adsorption:An experimental research on coal reservoirs in the south of Qinshui Basin[J].Chinese Science Bulletin,2005,50(S1):70-75.
    [14] 张时音,桑树勋,杨志刚.液态水对煤吸附甲烷影响的机理分析[J].中国矿业大学学报,2009,38(5):105-110.ZHANG Shiyin,SANG Shuxun,YANG Zhigang.Mechanism analysis on the effect of liquid water on coal adsorbing methane[J].Journal of China University of Mining & Technology,2009,38(5):105-110.
    [15] 张时音,桑树勋.液态水影响不同煤级煤吸附甲烷的差异及其机理[J].地质学报,2008,82(10):1350-1354.ZHANG Shiyin,SANG Shuxun.Influence mechanism of liquid water on methane absorption of coals with different ranks[J].ACTA Geologica Sinica,2008,82(10):1350-1354.
    [16] 刘洪林,李景明,王红岩,等.水动力对煤层气成藏的差异性研究[J].天然气工业,2006,26(3):35-37,158-159.LIU Honglin,LI Jingming,WANG Hongyan.Different effects of hydrodynamic conditions on coal-bed gas accumulation[J].Natural Gas Industry,2006,26(3):35-37,158-159.
    [17] 王勃,李谨,张敏.煤层气成藏地层水化学特征研究[J].石油天然气学报,2007,29(5):66-68.WANG Bo,LI Jin,ZHANG Min.Formation water chemical characteristics of coalbed methane(CBM) reservoir formation[J].Journal of Oil and Gas Technology,2007,29(5):66-68.
    [18] 伊向艺,吴红军,卢渊,等.不同矿化度水对煤层气解吸-扩散影响的实验[J].煤田地质与勘探,2013,5:33-35.YI Xiangyi,WU Hongjun,LU Yuan.Experimental study on the effect of salinity on coalbed methane desorption-diffusion[J].Coal Geology & Exploration,2013,5:33-35.
    [19] WANG Y,JIA D,PAN J,et al.Multiple-phase tectonic superposition and reworking in the Junggar Basin of northwestern China—Implications for deep-seated petroleum exploration[J].AAPG Bulletin,2018,102(8):1489-1521.
    [20] OU C,LI C,ZHI D,et al.Coupling accumulation model with gas-bearing features to evaluate low-rank coalbed methane resource potential in the southern Junggar Basin,China[J].AAPG Bulletin,2018,102(1):153-174.
    [21] WANG A M,WEI Y C,YUAN Y,et al.Coalbed methane reservoirs’ pore-structure characterization of different macrolithotypes in the southern Junggar Basin of Northwest China[J].Marine & Petroleum Geology,2017,86:675-688.
    [22] LI X,FU X,YANG X,et al.Coalbed methane accumulation and dissipation patterns:Case study of the Junggar Basin,NW China[J].Journal of Asian Earth Sciences,2018,160:13-26.
    [23] 李勇,曹代勇,魏迎春,等.准噶尔盆地南缘中低煤阶煤层气富集成藏规律[J].石油学报,2016,37(12):1472-1482.LI Yong,CAO Daiyong,WEI Yingchun,et al.Middle-low rank coalbed methane accumulation and reservoiring in southern Junggar basin,China[J].Acta Petrolei Sinica,2016,37(12):1472-1482.
    [24] FU H,TANG D,XU T,et al.Preliminary research on CBM enrichment models of low-rank coal and its geological controls:A case study in the middle of the southern Junggar Basin,NW China[J].Marine and Petroleum Geology,2017,83:97-110.
    [25] 王安民,曹代勇,魏迎春.煤层气选区评价方法探讨——以准噶尔盆地南缘为例[J].煤炭学报,2017,42(4):950-958.WANG Anmin,CAO Daiyong,WEI Yingchun.Discussion on methods for selected areas evaluation of coalbed methane:A case study of southern Junggar Basin[J].Journal of China Coal Society,2017,42(4):950-958.
    [26] ZHOU S,LIU D,CAI Y,et al.Petrographic controls on pore and fissure characteristics of coals from the southern Junggar coalfield,Northwest China[J].Energies,2018,11(6):1556-1577.
    [27] ZHOU S,LIU D,CAI Y,et al.Gas sorption and flow capabilities of lignite,subbituminous and high-volatile bituminous coals in the Southern Junggar Basin,NW China[J].Journal of Natural Gas Science & Engineering,2016,34:6-21.
    [28] 魏迎春,张强,王安民,等.准噶尔盆地南缘煤系水矿化度对低煤阶煤层气的影响[J].煤田地质与勘探,2016,44(1):31-37.WEI Yingchun,ZHANG Qiang,WANG Anmin,et al.The influence of the salinity of groundwater in coal measures on low rank coalbed methane in the south margin of Junggar basin[J].Coal Geology & Exploration,2016,44(1):31-37.
    [29] 张开军,张强,魏迎春,等.准噶尔盆地南缘硫磺沟地区水文地质特征及其对煤层气富集的影响[J].煤田地质与勘探,2018,46(1):61-65.ZHANG Kaijun,ZHANG Qiang,WEI Yingchun,et al.Hydrogeological conditions and their effect on the coalbed methane enrichment in Liuhuanggou area on the south margin of Junggar basin[J].Coal Geology & Exploration,2018,46(1):61-65.
    [30] YUAN Y,TANG Y,SHAN Y,et al.Coalbed methane reservoir eva-luation in the Manas mining area,southern Junggar Basin[J].Energy Exploration & Exploitation,2017,36(1):01445 9871772802.
    [31] 单衍胜,袁远,张家强,等.准南玛纳斯地区低阶煤储层特征及压裂改造效果研究[J].地质论评,2018,64(5):1277-1284.SHAN Yansheng,YUAN Yuan,ZHANG Jiaqiang,et al.Low-rank CBM reservoir characteristics and effects of fracturing reconstruction in the Manas area,Southern Junggar Basin[J].Geological Review,2018,64(5):1277-1284.
    [32] 韩旭,田继军,冯烁,等.准南煤田玛纳斯矿区向斜-承压式煤层气富集模式[J].天然气地球科学,2017,28(12):1891-1897.HAN Xu,TIAN Jijun,FENG Shuo,et al.Synline-confines-water model of coalbed methane enrichment in Manasi mining area,Southern Junggar Coal-field[J].Natural Gas Geoscience,2017,28(12):1891-1897.
    [33] 刘震,李增华,杨永良,等.水分对煤体瓦斯吸附及径向渗流影响试验研究[J].岩石力学与工程学报,2014,33(3):586-593.LIU Zhen,LI Zenghua,YANG Yongliang,et al.Experimental study of effect of water on sorption and radial gas seepage of coal[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(3):586-593.
    [34] 朱华银,徐轩,安来志,等.致密气藏孔隙水赋存状态与流动性实验[J].石油学报,2016,37(2):230-236.ZHU Huayin,XU Xuan,AN Laizhi,et al.An experimental on occurrence and mobility of pore water in tight gas reservoirs[J].ACTA Petrolei Sinica,2016,37(2):230-236.
    [35] 李靖,陈掌星,李相方,等.页岩及黏土纳米孔隙中液态水分布量化研究[J].中国科学:技术科学,2018,48(11):1219-1233.LI Jing,CHEN Zhangxing,LI Xiangfang,et al.A quantitative research of water distribution characteristics inside shale and clay nanopores[J].Scientia Sinica Technologica,2018,48(11):1219-1233.
    [36] 聂百胜,何学秋,王恩元,等.煤吸附水的微观机理[J].中国矿业大学学报,2004,33(4):17-21.NIE Baisheng,HE Xueqiu,WANG Enyuan,et al.Micro-mechanism of coal adsorbing water[J].Journal of China University of Mining & Technology,2004,33(4):17-21.
    [37] HAYASHI J I,NORINAGA K,KUDO N,et al.Estimation of size and shape of pores in moist coal utilizing sorbed water as a molecular probe[J].Energy & Fuels,2001,15(4):903-909.
    [38] 高正阳,杨维结.不同煤阶煤分子表面吸附水分子的机理[J].煤炭学报,2017,42(3):753-759.GAO Zhengyang,YANG Weijie.Adsorption mechanism of water molecule on different rank coals molecular surface[J].Journal of China Coal Society,2017,42(3):753-759.
    [39] 任加国,武倩倩.水文地球化学基础[M].北京:地质出版社,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700