用户名: 密码: 验证码:
碳化制度对锌基电池ZnO@C负极电化学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Carbonization Conditions on Electrochemical Performance of ZnO@C Anode Material for Zinc-based Battery
  • 作者:张志剑 ; 田忠良 ; 杨超 ; 赵恒勤 ; 赖延清
  • 英文作者:ZHANG Zhijian;TIAN Zhongliang;YANG Chao;ZHAO Hengqin;LAI Yanqing;School of Metallurgy and Environment,Central South University;Zhengzhou Institute of Multipurpose Utilization of Mineral Resources,Chinese Academy of Geological Sciences;
  • 关键词:碳包覆氧化锌 ; 碳化温度 ; 碳化时间 ; 锌基电池 ; 二次电池
  • 英文关键词:carbon-coated ZnO;;carbonization temperature;;carbonization time;;zinc-based battery;;secondary battery
  • 中文刊名:有色金属工程
  • 英文刊名:Nonferrous Metals Engineering
  • 机构:中南大学冶金与环境学院;中国地质科学院郑州矿产综合利用研究所;
  • 出版日期:2019-02-25
  • 出版单位:有色金属工程
  • 年:2019
  • 期:02
  • 基金:中南大学中央高校基本科研业务费专项资金资助项目(2017zzts682)~~
  • 语种:中文;
  • 页:31-36
  • 页数:6
  • CN:10-1004/TF
  • ISSN:2095-1744
  • 分类号:TM912
摘要
以间苯二酚-甲醛树脂为碳源,采用原位聚合加碳化处理的方法 ,成功制备了碳包覆氧化锌负极材料。结果表明,纳米氧化锌表面的碳层厚度均匀,结构完整。延长碳化时间提高了碳层的石墨化度,升高碳化温度增加了碳层的缺陷。电化学测试考察了碳化时间和碳化温度对碳包覆氧化锌负极材料电化学性能的影响,当碳化时间由6h延长至10h,材料的电荷转移阻抗减小,初始放电容量由400mA·h/g提高到530mA·h/g,循环性能在8h时最好;当碳化温度由600℃提高至800℃,材料在700℃时的电荷转移阻抗最小,循环性能最优,85次循环后容量保持率为97.8%,因此最佳的碳化条件为700℃碳化8h。
        Carbon-coated ZnO anode materials were successfully synthesized by in-situ polymerization followed with a carbonization process using resorcinol-formaldehyde resin as carbon source.The experimental results show that the thickness of the carbon layer on the surface of nanosized ZnO particles is uniform and the structure is intact.The degree of graphitization of the carbon layer increases with the extending of carbonization time.And the lattice defects increase with the rise of carbonization temperature.The effects of carbonization time and temperature on electrochemical performances of carbon-coated ZnO were investigated,and the optimized carbonization condition obtained is that carbonizing precursor at 700℃for 8 h.When the carbonization time extends from 6 hto 10 h,the charge transfer resistance of the materials decreases and the initial discharge capacity increases from 400 mA·h/g to530 mA ·h/g,and the cycling performance of sample prepared with 8 his best. When the carbonization temperature increases from 600℃to 800℃,the sample prepared at 700 ℃ shows least charge transfer resistance and best cycle performance with a capacity retention rate of 97.8% after 85 charge-discharge cycle.
引文
[1]ZHANG X G.Secondary batteries-zinc system/zinc electrodes:overview[M].New York:Elsevier,2009:454-468.
    [2]MAINAR A R,COLMENARES L C,BLáZQUEZ J A,et al.A brief overview of secondary zinc anode development:the key of improving zinc-based energy storage systems[J].International Journal of Energy Research,2018,42(3):903-918.
    [3]LI H,ZHOU H.Enhancing the performances of Li-ion batteries by carbon-coating:present and future[J].Chemical Communications,2012,48(9):1201-1217.
    [4]LONG W,YANG Z,FAN X,et al.The effects of carbon coating on the electrochemical performances of ZnO in Ni-Zn secondary batteries[J].Electrochimica Acta,2013,105:40-46.
    [5]牛凤光.镍锌电池负极材料及其循环稳定性的研究[D].重庆:重庆大学,2014:48-51.NIU Fengguang.A research on the negative material and cycle stability of nickel-zinc battery[D].Chongqing:Chongqing University,2014:48-51.
    [6]HUANG J,YANG Z.Improved cycling performance of cellular sheet-like carbon-coated ZnO as anode material for Zn/Ni secondary battery[J].ECS Electrochemistry Letters,2014,3(11):A116-A119.
    [7]JOO J B,LIU H,LEE Y J,et al.Tailored synthesis of C@TiO2 yolk-shell nanostructures for highly efficient photocatalysis[J].Catalysis Today,2016,264:261-269.
    [8]CHI Z,ZHANG W,WANG X,et al.Accurate surface control of core-shell structured LiMn0.5Fe0.5PO4@C for improved battery performance[J].Journal of Materials Chemistry A,2014,2(41):17359-17365.
    [9]FUERTES A B,VALLE-VIGóN P,SEVILLA M.Onestep synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules[J].Chemical Communications,2012,48(49):6124-6126.
    [10]MA X,LIU M,GAN L,et al.Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries[J].Physical Chemistry Chemical Physics,2014,16(9):4135-4142.
    [11]DU X,WANG C,CHEN M,et al.Effects of carbonization temperature on microstructure and electrochemical performances of phenolic resin-based carbon spheres[J].Journal of Physics and Chemistry of Solids,2010,71(3):214-218.
    [12]KAN Y,YUE Q,GAO B,et al.Preparation of epoxy resin-based activated carbons from waste printed circuit boards by steam activation[J].Materials Letters,2015,159:443-446.
    [13]SU D,WANG J,JIN H,et al.From“waste to gold”:a one-pot method to synthesize ultrafinely dispersed Fe2O3-based nanoparticles on N-doped carbon for synergistic and efficient water splitting[J].Journal of Materials Chemistry A,2015,3(22):11756-11761.
    [14]LIU F,PENG H,QIAO X,et al.High-performance doped carbon electrocatalyst derived from soybean biomass and promoted by zinc chloride[J].International Journal of Hydrogen Energy,2014,39(19):10128-10134.
    [15]QIN G,HE J,WEI W.Ultrafiltration carbon membranes from organic sol-gel process[J].Chemical Engineering Communications,2016,213(3):381-388.
    [16]TAZIWA R,MEYER E,KATWIRE D,et al.Influence of carbon modification on the morphological,structural,and optical properties of zinc oxide nanoparticles synthesized by pneumatic spray pyrolysis technique[J].Journal of Nanomaterials,2017,2017:1-11.
    [17]CUSCR,ALARCN-LLADE,IB珟NEZ J,et al.Temperature dependence of raman scattering in ZnO[J].Physical Review B,2007(16):165202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700