用户名: 密码: 验证码:
利用电导率测井与压水试验联合评价岩体渗透性的方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Method of evaluating the permeability of rock mass by the combination of packer test and flowing fluid electrical conductivity log
  • 作者:张必昌 ; 胡成 ; 陈刚 ; 张翛 ; 段丹丹
  • 英文作者:ZHANG Bichang;HU Cheng;CHEN Gang;ZHANG Xiao;DUAN Dandan;Shanxi Transportation Technology Research & Development Co.,Ltd;School of Environmental Studies,China University of Geosciences (Wuhan);
  • 关键词:裂隙岩体 ; 渗透系数 ; 压水试验 ; 电导率 ; 测井 ; 地下水封洞库
  • 英文关键词:fractured rock mass;;permeability coefficient;;packer test;;flowing fluid electrical conductivity;;logging;;groundwater sealing reservior
  • 中文刊名:水文地质工程地质
  • 英文刊名:Hydrogeology & Engineering Geology
  • 机构:山西省交通科技研发公司;中国地质大学(武汉)环境学院;
  • 出版日期:2019-05-15
  • 出版单位:水文地质工程地质
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金项目资助(41401539);; 山西省交通厅建设科技项目(17-2-03);山西省交通厅科技项目(2017-1-16);; 山西省重点研发计划项目(201603D321118)
  • 语种:中文;
  • 页:66-73
  • 页数:8
  • CN:11-2202/P
  • ISSN:1000-3665
  • 分类号:P641.73
摘要
进行地下水封洞库的水封条件分析评价必须获得准确可靠的建库岩体渗透性参数,而获取岩体渗透系数常用的传统水文地质试验方法存在明显的不足。为了试验数据的精确性,文章基于广义径向流(GRF)理论,依托烟台某地下水封洞工程,以丙烷洞库交通巷道钻孔为例,开展压水试验并采用非稳定流理论的GRF模型优化解析试验数据,结合电导率测井试验确定导水裂隙位置并求出裂隙范围内的渗透系数。试验结果表明:GRF模型比稳定流模型解析结果大1~2倍。原因在于裂隙岩体进行分段压水时,各段水流维度不一,传统稳定流理论假设水流维度只有二维流,而GRF模型为空间n维裂隙流用压水过程全部数据进行拟合,不同时段在相应维度下进行计算,因此其求算的渗透系数K更接近于试验段真值,具有更好的兼容性和实用性。同时利用电导率测井试验计算长度(导水裂隙范围)远远小于压水试验段计算长度的特点,可将GRF模型解析得出的分段渗透系数做进一步细化平均以提高压水试验解析结果的精度,为水封洞库效果评价、洞库涌水量预测提供更加科学可靠的数据基础。
        It is necessary to obtain accurate and reliable permeability parameters of the rock mass in the analysis and evaluation of the water-sealed conditions of the underground water-sealed cavern,while the commonly used hydrogeological test methods for obtaining the rock mass permeability coefficient exist obvious deficiencies. In order to keep accuracy of the data,relying on a certain groundwater sealing reservoir project in Yantai,the paper took the propane cavern traffic tunnel drilling as an example,carried out the water pressure test and used the theory of unsteady flow of GRF model to optimize the analytical test data based on the generalized radial flow theory. The water-conducting fracture location was confirmed by the flowing fluid electrical conductivity logging test and the permeability coefficient within the fracture range is obtained. The test results show that the analytical results of GRF model is 1-2 times larger than that of steady flow model.The reason is that when the fractured rock mass is subjected to sectional water pressure,the water flow dimensions of each section are different. The traditional steady flow theory assumes that the water flow dimension has only two-dimensional flow,while the GRF model fits all the data of the pressurized ndimensional fracture flow with the pressure water process. The time period is calculated under the corresponding dimension. Therefore,the calculated permeability coefficient K is closer to the true value of the test section,which is more compatibility and practicality. The use of flowing fluid electrical conductivity logging test will further refine the average permeability coefficient obtained from the GRF model analysis,and provide a more scientific and reliable data base for the evaluation of the effect of the water-sealed cavern.
引文
[1]范波,罗平平.钻孔压水试验理论研究现状及展望[J].煤炭工程,2010,1(1):91-94.[FAN B,LUO P P. Present status and outlook of theoretical study on borehole water pressurized test[J]. Coal Engineering,2010,1(1):91-94.(in Chinese)]
    [2] JACOB C E,LOHMAN S W. Nonsteady flow to a well of constant drawdown in an extensive aquifer[J].Transactions American Geophysical Union,1952,33(4):559-569.
    [3] ENACHESCU C, RAHM N. Hydraulic characterisation of the Stuttgart formation at the pilot test site for CO storage, Ketzin, Germany[J].International Journal of Greenhouse Gas Control,2010,4(6):960-971.
    [4] HURST W,CLARK J D,BRAUER E B. The skin effect in producing wells[J]. Journal of Petroleum Technology,1969,21(11):1483-1489.
    [5] BARKER J A. A generalized radial flow model for hydraulic tests in fractured rock[J]. Water Resources Research,1988,24(24):1796-1804.
    [6]张祯武,秦刚.利用定流量非稳定流压水试验求水文地质参数[J].岩石力学与工程学报,2004,23(2):344-347.[ZHANG Z W,QIN G.Determination of hydro-geological parameters by water pressure test of non-stationary flow with constant discharge[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(2):344-347.(in Chinese)]
    [7]张祯武,李兴成,徐光祥.利用定压力非稳定流压水试验求水文地质参数[J].岩石力学与工程学报,2004,23(15):2543-2546.[ZHANG Z W,LI X C,XU G X. Determination of hydrogeological parameters by water pressure test of steady-pressure and non-stationary flow[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(15):2543-2546.(in Chinese)]
    [8]王旭升,万力.单组裂隙压水试验的一个非稳定渗流模型[J].长江科学院院报,2009,26(10):35-38.[WANG X S,WAN L. Non-steady flow model of water injecting tests on a group of facture[J]. Journal of Yangtze River Scientific Research Institute,2009,26(10):35-38.(in Chinese)]
    [9]徐尚壁.压水试验求测渗透系数的射渗理论与方法[J].水利水运科学研究,1996(1):24-33.[XU S B. Spouting permeation theory and method for determing permeability coefficient by pressure water test[J]. Hydro-Science and Engineering,1996(1):24-33.(in Chinese)]
    [10] GRINGARTEN A C,RAMEY H J. Unsteady-state pressure distributions created by a well with a single horisontial fracture,partial penetration or restricted entry[J]. Society of Petroleum Engineers,1974,4(3):413-426.
    [11] OZKAN E,RAGHAVAN R. Some new solutions to solve problems in well test analysis:part 2[J].Computational Considerations and Applications,1988,6(3):359-368.
    [12] TSANG C F, HUFSCHMIED P, HALE F V.Determination of fracture inflow parameters with a borehole fluid conductivity logging method[J]. Water Resources Research,1990,26(4):561-578.
    [13] DOUGHTY C,TSANG C F,ROSBERG J E,et al.Flowing fluid electrical conductivity logging of a deep borehole during and following drilling:estimation of transmissivity,water salinity and hydraulic head of conductive zones[J]. Hydrogeology Journal,2017,25:1-17.
    [14] MOIR R S,PARKER A H,BOWN R T. A simple inverse method for the interpretation of pumped flowing fluid electrical conductivity logs[J]. Water Resources Research,2014,50(8):6466-6478.
    [15] DOUGHTY C,TSANG C F. Signatures in flowing fluid electric conductivity logs[J]. Journal of Hydrology,2005,310(1):157-180.
    [16]丁立丰,郭啟良,王成虎,等.某石油储备库吕荣压水试验与水力摩阻[J].水文地质工程地质,2011,38(6):35-38.[DING L F,GUO Q L,WANG C H,et al. Lugeon water pressure test and its hydraulic friction in an oil reserve library project[J].Hydrogeology&Engineering Geology,2011,38(6):35-38.(in Chinese)]
    [17]王新峰,梁杏,孙蓉琳,等.一种层状岩体压水试验成果计算分析渗透性的新方法[J].水文地质工程地质,2011,38(1):46-52.[WANG X F,LIANG X,SUN R L, et al. A new method of hydraulic conductivity calculating and analysis by water pressure test in layered rock[J]. Hydrogeology&Engineering Geology,2011,38(1):46-52.(in Chinese)]
    [18]水利水电工程钻孔压水试验规程:SL31-2003[S].北京:中国水利水电出版社,2003.[Code of water pressure test in borehole for water resources and hydropower engineering:SL31-2003[S]. Beijing:China Water Power Press,2003.(in Chinese)]
    [19]乔婷婷.基于Matlab的颤振自激力时域化[J].山西交通科技,2011(2):62-63.[QIAO T T. The time domain of flutter self-excited forces based on Matlab[J]. Shanxi Science&Technology of Communications,2011(2):62-63.(in Chinese)]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700