用户名: 密码: 验证码:
黄土丘陵区典型植被土壤剖面的颗粒分形特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fractal Characteristics of Soil Particle Compositions in Soil Profiles of Typical Vegetation Types on Loess Hilly Region
  • 作者:马文芳 ; 朱云鹏 ; 郭倩倩 ; 党亚爱
  • 英文作者:MA Wenfang;ZHU Yunpeng;GUO Qianqian;DANG Ya'ai;College of Science, Northwest A & F University;
  • 关键词:黄土丘陵区 ; 典型植被 ; 土壤剖面 ; 土壤PSD ; 体积分形维数
  • 英文关键词:Loess Hilly Region;;Typical vegetation;;Soil profile;;Soil PSD;;Volume fractal dimension
  • 中文刊名:土壤
  • 英文刊名:Soils
  • 机构:西北农林科技大学理学院;
  • 出版日期:2019-06-15
  • 出版单位:土壤
  • 年:2019
  • 期:03
  • 基金:陕西省自然科学基金项目(2015JQ4107);; 国家重点实验室专项基金项目(A314021402-1605)资助
  • 语种:中文;
  • 页:162-169
  • 页数:8
  • CN:32-1118/P
  • ISSN:0253-9829
  • 分类号:S152
摘要
运用分形理论研究陕北安塞五里湾流域5种典型植被0~200 cm土壤剖面土壤颗粒大小分布(particle size distribution,PSD)及其体积分形维数分布特征,并进一步分析土壤PSD的分形维数与土壤有机碳、全氮和含水量的相关性。结果表明:研究区典型植被群落土壤颗粒组成主要为细颗粒(黏粒和粉粒),其中粉粒体积分数占总颗粒的56.82%~71.99%;铁杆蒿草地的细颗粒平均体积分数最大(78.86%),乔木林的最小(65.77%)。5种典型植被群落土壤PSD的体积分形维数介于2.498~2.599,均表现出随着土层深度的增加呈递增趋势;相同土层深度的分形维数呈现出铁杆蒿草地>黄芪草地>农田>灌木林>乔木林的趋势,灌木林和农田间差异不显著,其他植被群落间差异显著。典型植被土壤PSD的体积分形维数与黏粒、粉粒的体积分数和含水量呈极显著正相关(P<0.01),但与砂粒的体积分数呈极显著负相关(P <0.01),与有机碳含量呈显著负相关(P <0.05)。
        Based on fractal theory, the fractal characteristics of soil particle size distributions(PSDs) within 0-200 cm soil profiles of the typical vegetation types in Wuliwan Watershed on the Loess Hilly Region were studied to explore the effects of vegetation type and soil depth on soil structure and to explore the relations between the volume fractal dimension and the contents of soil organic carbon, total nitrogen and soil water. The results showed that soil particle composition was mainly fine particles(clay and silt), and silt particles approximately accounted for 56.82%-71.99% of the total volume. The average volume fractions of fine particles were 78.86% and 65.77% for soil profile of Artemisia sacrorum grassland and woodland, respectively. The fractal dimensions of soil PSDs in five typical vegetation types ranged from 2.498-2.599, and most of them increased with the depth of soil layer. At the same soil layer, the fractal dimension of soil PSD showed the following order: Artemisia sacrorum grassland>Astragalus membranaceus grassland>farmland>shrubland>woodland, But there was no significant difference between shrubland and farmland. The fractal dimension of soil PSD in typical vegetation had extremely significant positive correlation with water content and the volume percentage of clay and silt(P<0.01), but significantly negative correlation with the volume percentage of sand and soil organic carbon content(P<0.05).
引文
[1] Giménez D, Perfect E, Rawls W J, et al. Fractal models for predicting soil hydraulic properties:A review[J]. Eng.Geol., 1997, 48:161–183
    [2] Rieu M. Fractal fragmentation, soil porosity and soil water properties:I. Theory[J]. Soil Science Society of America Journal, 1991, 55:1231–1238
    [3] Kravchenko A N, Boast C W, Bullock D G. Multifractal analysis of soil spatial variability[J]. Agron. J., 1999, 91:1033–1041
    [4] Gao G L, Ding G D, Wu B, et al. Fractal scaling of particle size distribution and relationships with topsoil properties affected by biological soil crusts[J]. PLoS One, 2014, 9(2):e88559
    [5] Ghanbarian B, Daigle H. Fractal dimension of soil fragment mass-size distribution:A critical analysis[J].Geoderma, 2015, 245:98–103
    [6] Turcotte D L. Fractal and fragmentation[J]. Journal of Geophysical Research, 1986, 91:1921–1926
    [7] Tyler S W, Wheatcraft S W. Application of fractal mathematics to soil water retention estimation[J]. Soil Science Society of America Journal, 1989, 53(4):987–996
    [8] Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions:Analysis and limitations[J]. Soil Science Society of America Journal,1992, 56(2):362–369
    [9] Xiao L, Xue S, Liu G B, et al. Fractal features of soil profiles under different land use patterns on the Loess Plateau, China[J]. Journal of Arid Land, 2014, 6(5):550–560
    [10] Ahmadi A, Neyshabouri M R, Rouhipour H, et al. Fractal dimension of soil aggregates as an index of soil erodibility[J]. Journal of Hydrology, 2011, 400(3/4):305–311
    [11] Millán H, Orellana R. Mass fractal dimensions of soil aggregates from different depths of a compacted Vertisol[J].Geoderma, 2001, 101(3/4):65–76
    [12] Xu Y F, Sun D A. A fractal model for soil pores and its application to determination of water permeability[J].Physica A Statistical Mechanics&Its Applications, 2002,316(s 1/2/3/4):56–64
    [13] Wang D, Fu B, Zhao W, et al. Multifractal characteristics of soil particle size distribution under different land-use types on the Loess Plateau, China[J]. Catena, 2008, 72(1):29–36
    [14] Niu X, Gao P, Wang B, et al. Fractal characteristics of soil retention curve and particle size distribution with different vegetation types in mountain areas of Northern China[J].International Journal of Environmental Research, 2015,12(12):15379–15389
    [15]杨慧玲,高鹏,王华伟,等.大黑山生态修复区不同植被类型土壤颗粒的分形特征[J].中国水土保持科学,2009, 7(5):52–57
    [16]王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报, 2005, 42(4):545–550
    [17]梁士楚,董鸣,王伯荪,等.英罗港红树林土壤粒径分布的分形特征[J].应用生态学报, 2003, 14(1):11–14
    [18]张超,刘国彬,薛萐,等.黄土丘陵区不同植被类型根际土壤微团聚体及颗粒分形特征[J].中国农业科学,2011,44(3):507–515
    [19]赵护兵,刘国彬,曹青玉,等.黄土丘陵区不同土地利用方式水土流失及养分保蓄效应研究[J].水土保持学报,2006, 20(1):20–24
    [20] Jiao J Y, Tzanopoulos J, Xofis P, et al. Factors affecting distribution of vegetation types on abandoned cropland in the hilly-gullied Loess Plateau region of China[J].Pedosphere, 2008, 18(1):24–33
    [21]鲍士旦.土壤农化分析[M]. 3版.中国农业出版社, 2000:30–48
    [22]李春喜,邵云,姜丽娜.生物统计学[M]. 4版.北京:科学出版社, 2008:44–46
    [23] Levine T R, Hullett C R. Eta squared, partial eta squared,and misreporting of effect size in communication research[J]. Human Communication Research, 2002, 28(4):612–625
    [24]贾晓红,李新荣,李元寿.干旱沙区植被恢复过程中土壤颗粒分形特征[J].地理研究, 2007, 26(3):518–525
    [25]党亚爱,李世清,王国栋,等.黄土高原典型土壤剖面土壤颗粒组成分形特征[J].农业工程学报, 2009, 25(9):74–78
    [26]王冬冬,高磊,陈效民,等.红壤丘陵区坡地土壤颗粒组成的空间分布特征研究[J].土壤, 2016, 48(2):361–367
    [27] Zuazo V H D. Soil-erosion and runoff prevention by plant covers. A review[J]. Agronomy for Sustainable Development, 2008, 28(1):65–86
    [28]王晗生,刘国彬.植被结构及其防止土壤侵蚀作用分析[J].干旱区资源与环境, 1999(2):62–68
    [29]管光玉,范燕敏,武红旗,等.不同利用方式土壤颗粒分形特征及其与土壤有机碳库稳定性的关系[J].草地学报, 2016, 24(2):258–262
    [30]程冬兵,蔡崇法,彭艳平,等.根据土壤粒径分形估计紫色土水分特征曲线[J].土壤学报, 2009, 46(1):30–36
    [31]高广磊,丁国栋,赵媛媛,等.生物结皮发育对毛乌素沙地土壤粒度特征的影响[J].农业机械学报, 2014, 45(1):115–120
    [32] Yu J B, Lv X, Bin M, et al. Fractal features of soil particle size distribution in newly formed wetlands in the Yellow River Delta[J]. Scientific Reports, 2015, 5:10540
    [33] Chen S N, Ai X Y, Dong T Y, et al. The physico-chemical properties and structural characteristics of artificial soil for cut slope restoration in Southwestern China[J]. Scientific Reports, 2016, 6:20565
    [34]谢贤健,韩光中.不同巨桉人工林土壤分形特征及抗蚀性分析[J].土壤, 2014(4):725–731

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700