用户名: 密码: 验证码:
致密砂岩储层不同含水条件下水力裂缝扩展物理模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physical simulation of the hydraulic fracture propagation for the tight sandstone reservoir under different water-bearing conditions
  • 作者:张健
  • 英文作者:ZHANG Jian;China United Coalbed Methane Co Ltd.;
  • 关键词:致密砂岩 ; 水力裂缝扩展 ; 含水条件 ; 变排量 ; 矿化度
  • 英文关键词:tight sandstone;;hydraulic fracture propagation;;water-bearing condition;;variable injection rate;;salinity
  • 中文刊名:大庆石油地质与开发
  • 英文刊名:Petroleum Geology & Oilfield Development in Daqing
  • 机构:中联煤层气有限责任公司;
  • 出版日期:2019-03-14 10:57
  • 出版单位:大庆石油地质与开发
  • 年:2019
  • 期:02
  • 基金:国家科技重大专项“临兴—神府地区煤系地层煤层气、致密气、页岩气合采示范工程”(2016ZX05066)
  • 语种:中文;
  • 页:156-161
  • 页数:6
  • CN:23-1286/TE
  • ISSN:1000-3754
  • 分类号:TE37
摘要
储层含水饱和度、压裂的注入方式和压裂用水矿化度都会影响致密砂岩气藏的水力压裂效果。为了掌握这三者对致密砂岩储层水力裂缝扩展的影响规律,利用大尺寸真三轴模拟压裂实验系统,研究了储层含水条件下,致密砂岩储层的水力裂缝生成和扩展形态;通过压裂液注入速率,模拟变排量工况;通过岩样被饱和水浸泡时间,模拟不同含水饱和度;通过盐水的密度,模拟压裂液用水矿化度。结果表明:提高压裂用水矿化度有利于水力裂缝的产生和扩展;变排量的注入方式,有助于孔喉的解堵,更有利于水力裂缝的产生和扩展;储层含水饱和度高,孔隙压力大,不利于水力裂缝的产生和扩展;正断层地应力条件下,主裂缝的走向基本与最大水平地应力方向一致。
        The formation water saturation, the injected mode and salinity of the fracturing fluid can affect the effects of the hydraulic fracturing in tight sandstone gas reservoirs. In order to grasp the influencing laws of the three factors stated above on the fracture propagation in the reservoirs, with the help of the large-size real-triaxis simulating-fracturing experimental system, the hydraulic fracture initiation and propagation configurations were researched in the reservoirs under the formation water-bearing condition. with the help of the injection rate of the fracturing fluid, the operational conditions of the variable injection rate can be simulated, by means of the soaked time by the saturated water for the rock sample, different water saturations can be simulated, using the brine density, the required salinity for the fracturing fluid can be simulated. The results show that increasing the salinity can be conductive to the initiation and propagation; the variable injection rate can help to plug the removal of the pore throat, which is more conducive to the initiation and propagation of the hydraulic fracture; while the following two conditions are just on the contrary: the rises of the reservoir water saturation and pore pressure; under the condition of the earth stress of the normal fault, the propagation direction of the main fracture can be generally in the same direction of the maximum horizontal terrestrial stress.
引文
[1]LAMONT N, JESSEN F W. The effects of existing fractures in rocks on the extension of hydraulic fractures[J].Journal of Petroleum Technology, 1963, 15(2):203-209.
    [2]BLANTON T L. An experimental study of interaction between hydraulically induced and pre-existing fractures[R].SPE 10847,1982.
    [3]ABASS H H, HEDAYATI S, KIM C M. Mathematical and experimental simulation of hydraulic fracturing in shallow goal seams[R].SPE-23452-MS,1991.
    [4]陈勉, 庞飞, 金衍. 大尺寸真三轴水力压裂模拟与分析[J].岩石力学与工程学报, 2000, 19(增刊1):868-872.CHEN Mian,PANG Fei, JIN Yan. Experiments and analysis on hydraulic fracturing by a large-size triaxial simulator[J].Chinese Journal for Rock Mechanics and Engineering,2000, 19(S1):868-872.
    [5]ZENG Zhengwen,ROEGIERS J C. Experimental observation of injection rate influence on the hydraulic fracturing behavior of a tight gas sandstone[R].SPE-78172-MS, 2002.
    [6]周健, 陈勉, 金衍,等. 裂缝性储层水力裂缝扩展机理试验研究[J].石油学报, 2007, 28(5):109-113.ZHOU Jian, CHEN Mian, JIN Yan, et al. Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir[J].Acta Petrolei Sinica,2007,28(5):109-113.
    [7]赵益忠, 曲连忠, 王幸尊,等. 不同岩性地层水力压裂裂缝扩展规律的模拟实验[J].中国石油大学学报(自然科学版), 2007, 31(3):63-66.ZHAO Yizhong, QU Lianzhong, WANG Xingzun, et al. Simulation experiment on prolongation law of hydraulic fracture for different lithologic formations[J].Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(3):63-66.
    [8]姚飞, 陈勉, 吴晓东,等. 天然裂缝性地层水力裂缝延伸物理模拟研究[J].石油钻采工艺, 2008, 30(3):83-86.YAO Fei,CHEN Mian, WU Xiaodong, et al. Physical simulation of hydraulic fracture propagation in naturally fractured formations[J].Oil Drilling & Production Technology, 2008, 30(3):83-86.
    [9]孟庆民, 张士诚, 郭先敏,等. 砂砾岩水力裂缝扩展规律初探[J].石油天然气学报, 2010, 32(4):119-123.MENG Qingmin, ZHANG Shicheng, GUO Xianmin, et al. A primary investigation on propagation mechanism for hydraulic fractures in glutenite formation[J].Journal of Oil and Gas Technology, 2010, 32(4):119-123.
    [10]HOU Bing,DIAO Ce,LI Dandan.An experimental investigation of geomechanical properties of deep tight gas reservoirs[J].Journal of Natural Gas Science & Engineering, 2017,47:22-33.
    [11]HOU Bing, ZHANG Ruxin, TAN Peng, et al. Characteristics of fracture propagation in compact limestone formation by hydraulic fracturing in Central Sichuan, China[J].Journal of Natural Gas Science & Engineering, 2018,57:122-134.
    [12]HOU Bing, ZHANG Ruxin, ZENG Yijin, et al.Analysis of hydraulic fracture initiation and propagation in deep shale formation with high horizontal stress diference[J].Journal of Petroleum Science and Engineering, 2018, 170:231-243.
    [13]ZHANG Ruxin, HOU Bing, SHAN Qinglin, et al. Hydraulic fracturing initiation and near-wellbore nonplanar propagation from horizontal perforated boreholes in tight formation[J].Journal of Natural Gas Science & Engineering, 2018,55:337-349.
    [14]HOU Bing, ZHANG Ruxin, CHEN Mian, et al. Investigation of acid fracturing treatment in limestone formation based on true tri-axial experiment[J].Fuel, 2019, 235:473-484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700