用户名: 密码: 验证码:
盐胁迫下海水稻抗逆生理响应分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physiological adversity resistance of sea rice to salinity stress
  • 作者:王旭明 ; 赵夏夏 ; 陈景阳 ; 许江环 ; 周柏霖 ; 王盼盼 ; 莫素 ; 莫俊杰 ; 谢平 ; 周鸿凯
  • 英文作者:WANG Xuming;ZHAO Xiaxia;CHEN Jingyang;XU Jianghuan;ZHOU Bolin;WANG Panpan;MO Su;MO Junjie;XIE Ping;ZHOU Hongkai;College of Agriculture, Guangdong Ocean University;
  • 关键词:海水稻 ; 盐胁迫 ; 抗逆生理 ; 渗透调节 ; 抗逆酶活性
  • 英文关键词:Sea rice;;Salt stress;;Anti-stress physiology;;Osmotic regulation;;Resistance enzyme activity
  • 中文刊名:中国生态农业学报(中英文)
  • 英文刊名:Chinese Journal of Eco-Agriculture
  • 机构:广东海洋大学农学院;
  • 出版日期:2019-05-15
  • 出版单位:中国生态农业学报(中英文)
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金项目(41073059);; 广东省高等教育高校创新强校工程项目(GDOU2017052604,2017KZDXM044);; 广东省农业科技创新及推广项目(2018LM2173);; 湛江市科技计划项目(2015A03015)资助~~
  • 语种:中文;
  • 页:87-96
  • 页数:10
  • CN:13-1432/S
  • ISSN:2096-6237
  • 分类号:S156.45
摘要
以海水稻品种‘FL478’‘JX99’‘Pokkali’和盐敏感品种‘IR29’为材料,设置6个土壤含盐量(0g·kg~(-1)、1 g·kg~(-1)、2 g·kg~(-1)、3 g·kg~(-1)、4 g·kg~(-1)、5 g·kg~(-1)),在防雨大棚下进行盆栽试验,孕穗期测定水稻叶片的丙二醛含量、细胞膜透性、可溶性糖含量、脯氨酸含量,以及Δ1-吡咯啉-5-羧酸合成酶(P5CS)、鸟氨酸-δ-氨基转移酶(δ-OAT)和超氧化物歧化酶(SOD)活性,旨在探讨盐胁迫下海水稻渗透调节物质、抗逆酶与海水稻耐盐性的关系,为海水稻耐盐基因的发掘和耐盐品种的选育提供理论依据。结果表明:1)盐胁迫抑制了海水稻叶绿素的合成与积累,表现为水稻叶片的叶绿素含量随盐胁迫梯度的增加而减少,但其叶绿素含量显著高于盐敏感水稻品种。2)海水稻和盐敏感水稻的可溶性糖对盐胁迫的响应差异显著,其中土壤含盐量0~3 g·kg~(-1)胁迫下,盐敏感水稻叶片的可溶性糖含量的增加显著高于海水稻,但是在土壤含盐量4~5 g·kg~(-1)下,海水稻叶片的可溶性糖积累量显著高于盐敏感水稻品种。3)随盐胁迫加剧海水稻和盐敏感水稻叶片的丙二醛积累,造成细胞膜透性逐渐增大,但是海水稻品种丙二醛的积累量显著低于盐敏感对照,这表明海水稻叶片细胞膜损伤较小。4)盐胁迫下,4个水稻叶片的脯氨酸含量和P5CS、δ-OAT、SOD活性随盐胁迫浓度增加均表现出先升高后降的趋势,海水稻和盐敏感水稻分别在3 g·kg~(-1)、2 g·kg~(-1)盐浓度达到峰值,而海水稻植株的游离脯氨酸积累量、P5CS、δ-OAT和SOD活性显著高于盐敏感水稻。5)盐胁迫下海水稻可溶性糖、脯氨酸和P5CS之间呈极显著正的简单相关和偏相关性。因此,海水稻的抗盐性为生理性耐盐:在盐胁迫下,植株脯氨酸合成酶P5CS和δ-OAT均被激活,脯氨酸合成的两个途径(谷氨酸→脯氨酸和鸟氨酸→脯氨酸)同时增强,促使植株游离脯氨酸的快速积累。同时,由于植株游离脯氨酸快速积累,也助于植株SOD活性的激活,有效降低活性氧的积累,并通过合成可溶性糖与脯氨酸协同缓解渗透胁迫,而表现为较强的耐盐性。
        The sea rice varieties ‘FL478' ‘JX99' ‘Pokkali' and salt-sensitive variety ‘IR29' were used to determine malondialdehyde content, cell membrane permeability, soluble sugar and proline in rice leaf. We also investigated the activities ofΔ1-pyrroline-5-carboxylic acid synthetase(P5 CS), ornithine-δ-aminotransferase(δ-OAT) and superoxide dismutase(SOD) under 0 g·kg~(-1), 1 g·kg~(-1), 2 g·kg~(-1), 3 g·kg~(-1), 4 g·kg~(-1) and 5 g·kg~(-1) of soil salt treatments at booting stage of potted rice under rainproof greenhouse conditions. This aim of the study was to investigate the relationship between osmotic regulators, stress resistance enzymes and salt tolerance of sea rice under salinity stress. The study also provided theoretical basis for the exploration of salt tolerance genes and breeding sea rice varieties with salt tolerance. The results were as follows: 1) salinity stress inhibited the synthesis and accumulation of chlorophyll in rice. Then chlorophyll content in rice leaf decreased with increasing salt stress concentration, and was significantly higher than that of salt-sensitive rice. 2) The response of soluble sugars of sea rice and salt-sensitive rice to salinity stress had significantly differences. The rise in soluble sugars of sea rice was less than that of salt-sensitive rice under 0-3 g·kg~(-1) soil salt content,but the content of soluble sugars of sea rice was significantly higher than that of salt-sensitive rice under 4-5 g·kg~(-1) soil salt content.3) Malondialdehyde contents of sea rice and salt-sensitive varieties increased with increasing salt stress, resulting in increased cell membrane permeability. However, malondialdehyde content of sea rice was significantly lower than that of salt-sensitive rice. This implied that leaf membrane damage of sea rice was significantly less than that of salt-sensitive rice. 4) Proline content and P5 CS,δ-OAT and SOD activities of rice leaf increased initially and then decreased with increasing salt stress. Proline content and P5 CS,δ-OAT and SOD activities of sea rice and salt-sensitive rice were maximum under 3 g·kg~(-1) and 2 g·kg~(-1) salt content, respectively.However, proline content and P5 CS, δ-OAT and SOD activities of sea rice were significantly higher than those of salt-sensitive rice.5) Simple and partial correlations of soluble sugar, proline and P5 CS were significantly positive under salinity stress. Salt tolerance characteristics of sea rice were considered as physiological salt tolerance. Proline synthetase P5 CS and δ-OAT of sea rice were both activated by salinity stress. The activity of two pathways of proline synthesis(ornithine synthase and glutamate synthase pathways)were simultaneously increased, which promoted rapid and high accumulation of free proline in sea rice. Rapid accumulation of free proline also activated SOD activity, which effectively destroyed the accumulation of intracellular reactive oxygen species. Soluble sugar and proline synergistically alleviated osmotic stress and sea rice showed a strong salt tolerance.
引文
[1]LIANG W J,MA X L,WAN P,et al.Plant salt-tolerance mechanism:A review[J].Biochemical and Biophysical Research Communications,2017,495(1):286-291
    [2]TESTER M,DAVENPORT R.Na+tolerance and Na+transport in higher plants[J].Annals of Botany,2003,91(5):503-527
    [3]许芳芳,袁立敏,邵玉芳,等.肠杆菌FYP1101对盐胁迫下小麦幼苗的促生效应[J].微生物学通报,2018,45(1):102-110XU F F,YUAN L M,SHAO Y F,et al.Effect of Enterobacter sp.FYP1101 on wheat seedling growth under salt stress[J].Microbiology China,2018,45(1):102-110
    [4]王瑞君.甘蓝型油菜种质资源芽期和苗期耐盐性鉴定与双向电泳体系的建立[D].南京:南京农业大学,2010WANG R J.Salt-tolerance evaluation of Brassica napus germplasm in the bud and seeding and establishment of the two-dimensional electrophoresis system[J].Nanjing:Nanjing Agricultural University,2010
    [5]靳继凯.转多基因水稻耐盐株系鉴定与评价[D].银川:宁夏大学,2014JIN J K.Identification and analysis of salt tolerance of multiple transgenic hybrid paddy rice[D].Yinchuan:Ningxia University,2014
    [6]陈雨生,王平,王克响,等.我国海水稻产业发展的战略选择[J].中国海洋大学学报:社会科学版,2018,(1):50-54CHEN Y S,WANG P,WANG K X,et al.The strategic choice of sea rice industry development in China[J].Journal of Ocean University of China:Social Sciences,2018,(1):50-54
    [7]杨福,梁正伟,王志春.水稻耐盐碱鉴定标准评价及建议与展望[J].植物遗传资源学报,2011,12(4):625-628YANG F,LIANG Z W,WANG Z C.Evaluation,suggestion and prospect on identification standards of saline-alkali tolerance in rice[J].Journal of Plant Genetic Resources,2011,12(4):625-628
    [8]EI-SHABRAWI H,KUMAR B,KAUL T,et al.Redox homeostasis,antioxidant defense,and methylglyoxal detoxification as markers for salt tolerance in pokkali rice[J].Protoplasma,2010,245(1/4):85-96
    [9]KABIR A H,ZAMAN R,BEGUM M C,et al.Upregulation of,OsNAS1,OsPCS1,and DREB1A transcripts along with anti-oxidative defense confers salt tolerance in rice(Oryza sativa L.cv Pokkali)[J].Archives of Agronomy and Soil Science,2016,62(10):1381-1395
    [10]SHOBBAR M S,AZHARI O,SHOBBAR Z S,et al.Comparative analysis of some physiological responses of rice seedlings to cold,salt,and drought stress[J].Journal of Plant Nutrition,2012,35(7):1037-1052
    [11]ZHAO X Q,WANG W S,ZHANG F,et al.Comparative metabolite profiling of two rice genotypes with contrasting salt stress tolerance at the seedling stage[J].PLoS One,2014,9(9):e108020
    [12]PRUSTY M R,KIM S R,VINARAO R,et al.Newly identified wild rice accessions conferring high salt tolerance might use a tissue tolerance mechanism in leaf[J].Frontiers in Plant Science,2018,9:417
    [13]DOMINGO C,LALANNE E,CATALáM M,et al.Physiological basis and transcriptional profiling of three salt-tolerant mutant lines of rice[J].Frontiers in Plant Science,2016,7:1462
    [14]CHEN R S,CHENG Y F,HAN SY,et al.Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted,salt-resistant rice cultivar-sea rice 86[J].BMCGenomics,2017,18(1):655
    [15]祝一文,赵方贵,成云峰,等.‘海稻86’耐盐碱胁迫生理机制的初步研究[J].青岛农业大学学报:自然科学版,2018,35(1):32-39ZHU Y W,ZHAO F G,CHENG Y F,et al.The preliminary study on alkali-salt tolerance of‘Sea Rice 86’and physiological mechanisms[J].Journal of Qingdao Agricultural University:Natural Science,2018,35(1):32-39
    [16]王素平,郭世荣,胡晓辉,等.盐胁迫对黄瓜幼苗叶片光合色素含量的影响[J].江西农业大学学报,2006,28(1):32-38WANG S P,GUO S R,HU X H,et al.Effects of NaCl stress on the content of photosynthetic pigments in the leaves of cucumber(Cucumis sativus L.)seedlings[J].Acta Agriculturae Universitatis Jiangxiensis,2006,28(1):32-38
    [17]施海涛.植物逆境生理学实验指导[M].北京:科学出版社,2016SHI H T.Experimental Instruction of Plant Stress Physiology[M].Beijing:Science Press,2016
    [18]黄顶,王堃.典型草原常见牧草春季萌动期可溶性糖及内源激素动态研究[J].应用生态学报,2006,17(2):210-214HUANG D,WANG K.Dynamics of soluble sugar and endogenous hormone contents in several steppe grass species during their germination period in spring[J].Chinese Journal of Applied Ecology,2006,17(2):210-214
    [19]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:167-169,258-261LI H S.Principles and Techniques of Plant Physiological Biochemical Experiment[M].Beijing:Higher Education Press,2000:167-169,258-261
    [20]YANG C Y,LING H E.Neuroprotective effects of sinapine on PC12 cells apoptosis induced by sodium dithionite[J].Chinese Journal of Natural Medicines,2008,6(3):205-209
    [21]HAYZER D J,LEISINGER T.The gene-enzyme relationships of proline biosynthesis in Escherichia coli[J].Journal of General Microbiology,1980,118(2):287-293
    [22]韩晓玲.小冠花抗L-羟基脯氨酸(Hyp)变异系离体筛选及其耐盐性研究[D].西安:西北大学,2006HAN X L.In vitro selection of L-hydroxyproline resistant variants of Coronilla varia L.and studies on their salt tolerance[D].Xi’an:Northwest University,2006
    [23]HU C A,DELAUNEY A J,VERMA D P.A bifunctional enzyme(delta 1-pyrroline-5-carboxylate synthetase)catalyzes the first two steps in proline biosynthesis in plants[J].Proceedings of the National Academy of Sciences of the United States of America,1992,89(19):9354-9358
    [24]KIM H R,RHO H W,PARK J W,et al.Assay of ornithine aminotransferase with ninhydrin[J].Analytical Biochemistry,1994,223(2):205-207
    [25]叶红卫,朱蓝辉.应用SPSS进行双因子方差分析[J].河北北方学院学报:自然科学版,2008,24(2):63-65YE H W,ZHU L H.Using SPSS to make double factor variance analysis[J].Journal of Hebei North University:Natural Science Edition,2008,24(2):63-65
    [26]宋小园,朱仲元,刘艳伟,等.通径分析在SPSS逐步线性回归中的实现[J].干旱区研究,2016,33(1):108-113SONG X Y,ZHU Z Y,LIU Y W,et al.Application of path analysis in stepwise linear regression SPSS[J].Arid Zone Research,2016,33(1):108-113
    [27]王旭明,赵夏夏,陈景阳,等.低盐胁迫对5个海水稻种质若干生理生化指标的影响[J].热带农业科学,2018,38(8):24-29WANG X M,ZHAO X X,CHEN J Y,et al.Effect of low salt stress on several physiological and biochemical indicators of five accessions of sea rice[J].Chinese Journal of Tropical Agriculture,2018,38(8):24-29
    [28]赵勇,马雅琴,翁跃进.盐胁迫下小麦甜菜碱和脯氨酸含量变化[J].植物生理与分子生物学学报,2005,31(1):103-106ZHAO Y,MA Y Q,WENG Y J.Variation of betaine and proline contents in wheat seedlings under salt stress[J].Journal of Plant Physiology and Molecular Biology,2005,31(1):103-106
    [29]徐宇,肖化云,郑能建,等.植物组织中游离氨基酸在盐胁迫下响应的研究进展[J].环境科学与技术,2016,39(7):40-47XU Y,XIAO H Y,ZHENG N J,et al.Progress on responding of free amino acid in plants to salt stress[J].Environmental Science and Technology,2016,39(7):40-47
    [30]ZHOU H,QIAN J,ZHAO M D,et al.Cloning and sequence analysis of theΔ1-pyrroline-5-carboxylate synthase gene(MP5CS)from mulberry(Morus alba)and patterns of MP5CSgene expression under abiotic stress conditions[J].Journal of Horticultural Science and Biotechnology,2016,91(1):100-108
    [31]YOU J,HU H H,XIONG L Z.An ornithineδ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice[J].Plant Science,2012,197:59-69
    [32]MIRZAEE M,MOIENI A,GHANATI F.Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola(Brassica napus L.)cultivars[J].Journal of Agricultural Science and Technology,2013,15(3):593-602
    [33]LOS D A,MURATA N.Membrane fluidity and its roles in the perception of environmental signals[J].Biochimica et Biophysica Acta(BBA)-Biomembranes,2004,1666(1/2):142-157
    [34]王鑫月.盐胁迫和铝胁迫对水稻膜脂组分和含量的影响[D].西安:中国科学院研究生院(教育部水土保持与生态环境研究中心),2016WANG X Y.Effect of salt stress and aluminum stress on the composition and content of membrane lipids in rice[D].Xi’an:Graduate School of Chinese Academy of Sciences(Research Center for Soil and Water Conservation and Ecological Environment,Ministry of Education),2016
    [35]冯坤,郑青松,俞佳虹,等.超氧化物歧化酶的遗传特征及其在植物抗逆性中的研究进展[J].分子植物育种,2017,15(11):4498-4505FENG K,ZHENG Q S,YU J H,et al.The characteristics of superoxide dismutase(SOD)in evolutions and its research in plant resistance[J].Molecular Plant Breeding,2017,15(11):4498-4505
    [36]KRISHNAMURTHY P,RANATHUNGE K,FRANKE R,et al.The role of root apoplastic transport barriersin salt tolerance of rice(Oryza sativa L.)[J].Planta,2009,230(1):119-134
    [37]高继平.水稻耐盐数量性状基因SKC1的作用机理及OsHKT基因的表达模式分析[D].上海:中国科学院研究生院(上海生命科学研究院),2007GAO J P.Mechanism of SKC1,a rice quantitative trait locus for salt tolerance,and analysis of expression pattern of OsHKTgenes[D].Shanghai:Graduate School of Chinese Academy of Sciences(Shanghai Institute of Nutrition and Health,Chinese Academy of Sciences),2007
    [38]罗秋香,管清杰,金淑梅,等.植物耐盐性分子生物学研究进展[J].分子植物育种,2006,4(S2):57-64LUO Q X,GUAN Q J,JIN S M,et al.Advances on application of molecular biology on plant salt tolerance research[J].Molecular Plant Breeding,2006,4(S2):57-64
    [39]王旭明,赵夏夏,黄露莎,等.盐胁迫下4个不同耐盐基因型水稻Na+、K+积累效应[J].热带作物学报,2018,39(11):2140-2146WANG X M,ZHAO X X,HUANG L S,et al.The Na+and K+accumulative effect of four different salt tolerance genotypes in rice under salt stress[J].Chinese Journal of Tropical Crops,2018,39(11):2140-2146
    [40]卢霖,董志强,董学瑞,等.乙矮合剂对不同密度夏玉米花粒期不同部位叶片衰老特性的影响[J].作物学报,2016,42(4):561-573LU L,DONG Z Q,DONG X R,et al.Effects of ethylene-chlormequat-potassium on characteristics of leaf senescence at different plant positions after anthesis under different planting densities[J].Acta Agronomica Sinica,2016,42(4):561-573
    [41]RAO G G,RAO G R.Pigment composition and chlorophyllase activity in pigeon pea(Cajanus indicus Spreng)and Gingelley(Sesamum indicum L.)under NaCl salinity[J].Indian Journal of Experimental Biology,1981,19(8):768-770
    [42]GUO Y Y,YU H Y,YANG M M,et al.Effect of drought stress on lipid peroxidation,osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr.seedling[J].Russian Journal of Plant Physiology,2018,65(2):244-250
    [43]YILDIZTUGAY E,OZFIDAN-KONAKCI C,KUCUKODUKM,et al.Variations in osmotic adjustment and water relations of Sphaerophysa kotschyana:Glycine betaine,proline and choline accumulation in response to salinity[J].Botanical Studies,2014,55:6
    [44]GHOULAM C,FOURSY A,FARES K.Effects of salt stress on growth,inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J].Environmental and Experimental Botany,2002,47(1):39-50
    [45]LI Q,YANG A,ZHANG W H.Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress[J].BMC Plant Biology,2017,17(1):141
    [46]BAGDI D L,SHAW B P,SAHU B B,et al.Real time PCR expression analysis of gene encoding p5cs enzyme and proline metabolism under NaCl salinity in rice[J].Journal of Environmental Biology,2015,36(4):955-961
    [47]BASU S,GANGOPADHYAY G,MUKHERJEE B B.Salt tolerance in rice in vitro:Implication of accumulation of Na+,K+and proline[J].Plant Cell,Tissue and Organ Culture,2002,69(1):55-64
    [48]ZHANG H,LIU X L,ZHANG R X,et al.Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice(Oryza sativa L.)[J].Frontiers in Plant Science,2017,8:1580
    [49]赵曼利,杜启兰,焦健,等.盐胁迫对不同品种油橄榄抗盐性生理指标的影响[J].福建农林大学学报:自然科学版,2016,45(1):19-25ZHAO M L,DU Q L,JIAO J,et al.Physiological response and salt resistance evaluation of six varieties of Olea europaea under salt stress[J].Journal of Fujian Agriculture and Forestry University:Natural Science Edition,2016,45(1):19-25
    [50]李倩,刘景辉,武俊英,等.盐胁迫对燕麦质膜透性及Na+、K+吸收的影响[J].华北农学报,2009,24(6):88-92LI Q,LIU J H,WU J Y,et al.Effect of salt stress on membrane permeability and Na+、K+absorption of oat[J].Acta Agriculturae Boreali-Sinica,2009,24(6):88-92
    [51]PARIDA A K,JHA B.Salt tolerance mechanisms in mangroves:A review[J].Trees,2010,24(2):199-217
    [52]MITTLER R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7(9):405-410

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700