用户名: 密码: 验证码:
100GPa条件下BC_4N(C_2)/(BN)_(2×1)(111)超结构的电子特性及光学性质研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electronic Structures and Optical Properties of BC_4N(C_2)/( BN)_(2×1)(111) Superlattice at 100 GPa
  • 作者:唐明君
  • 英文作者:TANG Mingjun;College of Physics and Electronic Engineering,Sichuan Normal University;Institute of Information Science and Technology,Chengdu Polytechnic;
  • 关键词:BC_4N ; 超结构 ; 第一性原理 ; 高压
  • 英文关键词:BC_4N;;superlattice;;first-principles;;high pressure
  • 中文刊名:四川师范大学学报(自然科学版)
  • 英文刊名:Journal of Sichuan Normal University(Natural Science)
  • 机构:四川师范大学物理与电子工程学院;成都职业技术学院信息科学技术研究院;
  • 出版日期:2019-03-20
  • 出版单位:四川师范大学学报(自然科学版)
  • 年:2019
  • 期:02
  • 基金:四川省教育厅自然科学重点项目(16ZA0052和15ZA0033)
  • 语种:中文;
  • 页:94-99
  • 页数:6
  • CN:51-1295/N
  • ISSN:1001-8395
  • 分类号:TQ163
摘要
用密度泛函理论平面波赝势方法及广义梯度近似研究(C_2)/(BN)_(2×1)超结构在高压下的电子特性和光学性质,并计算模拟其能带结构与光学性能随压强的变化规律.结果表明:随着外界压强的增大,该物质的禁带宽度略有展宽.当压强从0增至100 GPa时,禁带宽度值从2.353 e V增加到2.438 e V,相对增加值为3.48%.从态密度图上可以看出,由于(C_2)/(BN)_(2×1)的s轨道和p轨道杂化程度较高,该结构处于稳定状态.根据介电函数可知,随着压力的增大该物质的本征吸收限略显蓝移,这与禁带宽度随压强的增加略有增大的结果一致.从吸收系数图谱上可以看出,当波长大于248 nm后该物质是透明的,也就是说在可见光范围内(390~700 nm),BC_4N是一种透明物质.同时,随着压强的增加,吸收系数、反射系数、能量损失谱、消光系数和折射率均出现蓝移,但图谱的形态没有明显的改变.
        Electronic structures and optical properties of( C_2)/( BN)_(2×1) superlattice at high pressure have been investigated using generalized gradient approximation with the density functional theory( DFT) plane-wave pseudopotential method. The pressure dependences of electronic band structures,the optical properties of( C_2)/( BN)_(2×1) superlattice are predicted. It is found that the calculated band gap is slightly widened as the external-pressure increases. The value increases from 2.353 e V to 2.438 e V,and the relative band gap is 3.48%,when the pressure increases from 0 to 100 GPa. From the density of state,it can be seen that the structure is stable because of the high degree of hybridization between the s and p orbitals of the( C_2)/( BN)_(2×1). According to the dielectric function,the eigenvalue absorption limit has slightly blue-shift with the increase of pressure,which is consistent with the small increase of the band gap. And the absorption coefficient spectra suggest that( C_2)/( BN)_(2×1) superlattices are consistently transparent when the wavelength is longer than 248 nm,that is to say,they are transparent in the range of visible light( 390-700 nm) under high pressure. Moreover,all of the optical spectra,such as absorption coefficient α( ω),reflectivity coefficient R( ω),energy-loss spectrum L( ω),the extinction coefficient k( ω),and refractive index n( ω) have blue-shift as pressure increases without any notable shape changes.
引文
[1]LIU A Y,COHEN M L.Prediction of new low compressibility solids[J].Science,1989,245(4920):841-842.
    [2]TETER D M,HEMLEY R J.Low-compressibility carbon nitrides[J].Science,1996,271(5245):53.
    [3]IRIFUNE T,KURIO A,SAKAMOTO S,et al.Ultrahard polycrystalline diamond from graphite[J].Nature,2003,421(6923):599-600.
    [4]BADZIAN A R.Cubic boron nitride-diamond mixed crystals[J].Materials Research Bulletin,1981,16(11):1385-1393.
    [5]HUBACEK M,SATO T.Preparation and properties of a compound in the BCN system[J].J Solid State Chemistry,1995,114(1):258-264.
    [6]KAWAGUCHI M,WAKUKAWA Y.Synthesis of graphite-like material of composition BC6N by CVD at high temperature[J].Carbon,1999,37(1):147-149.
    [7]SUN J,ZHOU X F,FAN Y X,et al.First-principles study of electronic structure and optical properties of heterodiamond BC2N[J].Phys Rev,2006,B73(4):045108.
    [8]SOLOZHENKO V L,ANDRAULT D,FIQUET G,et al.Synthesis of superhard cubic BC2N[J].Appl Phys Lett,2001,78(10):1385-1387.
    [9]KNITTLE E,KANER R B,JEANLOZ R,et al.High-pressure synthesis,characterization,and equation of state of cubic C-BNsolid solutions[J].Phys Rev,1995,B51(18):12149.
    [10]TETER D M.Computational alchemy:the search for new superhard materials[J].Mrs Bulletin,1998,23(1):22-27.
    [11]LIU A Y,WENTZCOVITCH R M,COHEN M L.Atomic arrangement and electronic structure of BC2N[J].Phys Rev,1989,B39(3):1760.
    [12]MIYAMOTO Y,COHEN M L,LOUIE S G.Ab initio calculation of phonon spectra for graphite,BN,and BC2N sheets[J].Phys Rev,1995,B52(20):14971.
    [13]BAI X D,WANG E G,YU J,et al.Blue-violet photoluminescence from large-scale highly aligned boron carbonitride nanofibers[J].Appl Phys Lett,2000,77(1):67-69.
    [14]SUGINO T,HIEDA H.Field emission characteristics of boron carbon nitride films synthesized by plasma-assisted chemical vapor deposition[J].Diamond and Related Materials,2000,9(3):1233-1237.
    [15]ZHAO Y,HE D W,DAEMEN L L,et al.Superhard B-C-N materials synthesized in nanostructured bulks[J].J Materials Research,2002,17(12):3139-3145.
    [16]TANG M J,HE D W,WANG W D,et al.Superhard solid solutions of diamond and cubic boron nitride[J].Scripta Mater,2012,66:781-784.
    [17]STRAUMANIS M E,AKA E Z.Precision determination of lattice parameter,coefficient of thermal expansion and atomic weight of carbon in diamond[J].J Am Chem Soc,1951,73(12):5643-5646.
    [18]WENTORF JR R H.Cubic form of boron nitride[J].J Chem Phys,1957,26(4):956-956.
    [19]KURDYUMOV A V,SOLOZHENKO V L.Shock synthesis of ternary diamond-like phases in the B-C-N system[J].Powder Metallurgy and Metal Ceramics,2000,39(9/10):467-473.
    [20]FISCHER T H,ALMLOF J.General methods for geometry and wave function optimization[J].J Phys Chem,1992,96(24):9768-9774.
    [21]PERDEW J P,BURKE K,ERNZERHOF M.Generalized gradient approximation made simple[J].Phys Rev Lett,1996,77(18):3865.
    [22]LI Y,FAN W,SUN H,et al.First-principles study of the electronic structure,optical properties,and lattice dynamics of BC2N[J].J Phys Chem,2010,C114(6):2783-2791.
    [23]PETER Y U,CARDONA M.Fundamentals of Semiconductors:Physics and Materials Properties[M].New York:Springer-Verlag,2010.
    [24]SAHA S,SINHA T P,MOOKERJEE A.Electronic structure,chemical bonding,and optical properties of paraelectric Ba Ti O3[J].Phys Rev,2000,B62(13):8828.
    [25]DUAN M Y,HE L,XU M,et al.Structural,electronic,and optical properties of wurtzite and rocksalt In N under pressure[J].Phys Rev,2010,B81(3):033102.
    [26]CHEN S,GONG X G,WEI S H.Configuration dependence of the electronic structure and optical properties of BC2N alloys[J].Phys Status Solidi,2009,B246(3):589-593.
    [27]周春,周晓林.高压下Zr B2的结构和热力学性质的第一性原理计算[J].四川师范大学学报(自然科学版),2009,32(2):206-209.
    [28]成娟,刘科.高压下c-Zr3N4弹性性质和热力学性质的第一性原理研究[J].四川师范大学学报(自然科学版),2014,37(4):540-546.
    [29]范强,何知宇,杨建会,等.闪锌矿Zn O电子结构与光学性质的杂化泛函研究[J].四川师范大学学报(自然科学版),2016,39(2):266-271.
    [30]WANG P,HE D W,WANG L P,et al.Diamond-c BN alloy:a universal cutting material[J].Appl Phys Lett,2015,107(10):51-139.
    [31]LIU Y J,HE D W,KOU Z L,et al.Hardness and thermal stability enhancement of polycrystalline diamond compact through additive hexagonal boron nitride[J].Scripta Materialia,2018,149:1-5.
    [32]LIU Y J,HE D W,WANG P,et al.Synthesis and study of superhard composites under high pressure[J].Acta Phys Sin,2017,66(3):038103-1-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700