用户名: 密码: 验证码:
可变电荷土壤表面酸碱性质与模型研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progresses in Research on Surface Acid-Base Properties of Variable Charge Soils and Their Models
  • 作者:程鹏飞 ; 王莹 ; 李芳柏 ; 秦好丽 ; 彭叶棉 ; 刘同旭
  • 英文作者:CHENG Pengfei;WANG Ying;LI Fangbai;QIN Haoli;PENG Yemian;LIU Tongxu;Guangdong Institute of Eco-environmental Science & Technology,Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management;School of Chemistry and Materials Science,Guizhou Normal University;
  • 关键词:土壤表面酸碱性质 ; 表面络合模型 ; 组分添加法 ; 广义复合法
  • 英文关键词:Surface acid-base properties of soils;;Surface complexation model;;Component addition method;;Generalized composite method
  • 中文刊名:土壤学报
  • 英文刊名:Acta Pedologica Sinica
  • 机构:广东省生态环境技术研究所广东省农业环境综合治理重点实验室;贵州师范大学化学与材料科学学院;
  • 出版日期:2019-01-08 11:04
  • 出版单位:土壤学报
  • 年:2019
  • 期:03
  • 基金:国家重点研发计划项目(2016YFD0800404);; 国家重点基础研究发展计划项目(2014CB441002)资助~~
  • 语种:中文;
  • 页:12-23
  • 页数:12
  • CN:32-1119/P
  • ISSN:0564-3929
  • 分类号:S153
摘要
可变电荷土壤表面酸碱性质是指土壤与质子的结合能力,主要包括表面质子反应活性位点密度Ds、电荷零点pH_(pzc)以及质子化、去质子平衡常数pK_a。表面酸碱性质对于评估土壤酸碱缓冲能力、揭露酸化机制有重要意义,也是探究阳离子和阴离子在土壤固液间的分配,控制微量元素移动性和生物有效性的重要土壤性质之一。本文综述了通过表面络合模型获取表面酸碱性质参数的方法以及研究复杂土壤体系的两种方法。电荷零点pH_(pzc)主要通过宏观滴定实验获得,但需要不断优化实验操作来减少无意义因素的影响。而表面质子反应活性位点密度D_s和质子化、去质子化平衡常数pK_a,则通常分别通过Gran函数和直线外推法计算等方法得到。目前,土壤活性成分金属氧化物、黏土矿物及腐殖质表面酸碱性质已通过表面络合模型得到广泛研究,研究方法和相关数据已逐渐趋于完善。而随着表面络合模型的发展,土壤混合体系表面酸碱性质的研究也在不断加深。组分添加法通过各组分表面性质的加和来预测质子在土壤和溶液中分配和形态,目前已从矿物聚合模型扩展到矿物-有机物聚合模型,因为有机物和矿物组分之间的相互作用对于研究相当重要。而广义复合法假设土壤表面性质均一,依据实验吸附数据和表面积拟合获得表面酸碱性质,现在已发展为n-site/n-p Ka,并建立了一种通过土壤化学性质预测表面酸碱性质广义回归方程。最后,文章探讨了表面络合模型相关研究应该解决的科学问题,以及土壤表面酸碱性质研究在未来的趋势。
        Surface acid-base properties of variable charge soils refer to ability of the soil to bind protons, mainly involving density of surface proton reaction active sites(D_s), point of zero charge(pH_(pzc)), and equilibrium constants of protonation and proton abstraction(pK_a). Surface acid-base properties are important indices of great significance to evaluation of acid-base buffering capacity of soils and exposition of mechanisms of soil acidification. Meanwhile, they are also one of the soil properties that are important to exploration of distribution of cations and anions in the soil solid-liquid interface and control of mobility and bioavailability of soil micro-elements. This paper presented a review of approaches to acquisition of the parameters of surface acid-base properties using the surface complexation model(SCM), and the two methods of studying complex soil systems. pH_(pzc) is mainly obtained through macro-titration, but needs to be continuously optimized thorough experiments to reduce the impacts of meaningless factors, while D_s and pK_a are usually worked out separately with Gran function and linear extrapolation. At present, extensive researches have been done on surface acid-base properties of soil active component metal oxides, clay minerals and humus with research methods and relevant data approaching perfection. Charge Distribution Multisite Complexation Model(CD-MUSIC) and Non-ideal Competitive Adsorption-Donnan(NICA–Donnan) have been established to describe ion adsorption on minerals and organic matter, separately. With the development of SCM, the research on surface acid-base properties of the complex soil systems or natural soil systems is going on in depth. The component addition(CA) and generalized composite(GC) approaches are recommended for use to simulate the properties of soils. CA is used to predict distribution and morphology of protons in soils and soil solutions by adding up surface properties of various components, and its use has extended from the mineral polymerization model to the mineral-organic polymerization model, because the interaction between the organic and mineral components is very important to the research on natural systems. An LCD model, combining the CD–MUSIC and NICA–Donnan models into a mechanistic framework, is introduced for description of sorption of organic matter to the surface of minerals, and ions binding the two. Furthermore, GC assumes that the surface properties of the soil are uniform and can be obtained by fitting the experimental adsorption data and the surface area. Quality of the fitting depends on how detailed the surface information is, and the GC has developed from 1-site/1-pK_a to n-site/n-pK_a. Besides, a generalized regression equation is recommended for prediction of acid-base properties merely based on basic chemical properties. Finally, the paper further explores scientific issues that need to be solved for researches related to surface complexation models and future trends of the research on acid-base properties of soils.
引文
[1]徐仁扣.土壤酸化及其调控研究进展.土壤,2015,47(2):238-244Xu R K.Research progresses in soil acidification and its control(In Chinese).Soils,2015,47(2):238-244
    [2]王敬华,张效年,于天仁.华南红壤对酸雨敏感性的研究.土壤学报,1994,31(4):348-355Wang J H,Zhang X N,Yu T R.Study on sensitivity of red soils to acid rain in south China(In Chinese).Acta Pedologica Sinica,1994,31(4):348-355
    [3]Wang Y,Cheng P,Li F,et al.Variable charges of a red soil from different depths:Acid-base buffer capacity and surface complexation model.Applied Clay Science,2018,159:107-115
    [4]Cheng P,Wang Y,Cheng K,et al.The acid-base buffer capacity of red soil variable charge minerals and its surface complexation model.Acta Chimica Sinica,2017,75(6):637-644
    [5]Adekola F,Fédoroff M,Geckeis H,et al.Characterization of acid-base properties of two gibbsite samples in the context of literature results.Journal of Colloid and Interface Science,2011,354(1):306-317
    [6]Liu T,Li X,Waite T D.Depassivation of aged FeOby divalent cations:Correlation between contaminant degradation and surface complexation constants.Environmental Science&Technology,2014,48(24):14564-14571
    [7]Liu T,Li X,Waite T D.Depassivation of aged FeO by ferrous ions:implications to contaminant degradation.Environmental Science&Technology,2013,47(23):13712-13720
    [8]Liu T,Li X,Waite T D.Depassivation of aged FeO by inorganic salts:Implications to contaminant degradation in seawater.Environmental Science&Technology,2013,47(13):7350-7356
    [9]Liu T,Li X,Zhang W,et al.Fe(III)oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17.Journal of Colloid and Interface Science,2014,423(6):25-32
    [10]王代长,蒋新,贺纪正,等.应用Multi-Langmuir模型评价土壤的表面电荷特性.土壤学报,2009,46(4):611-616Wang D C,Jiang X,He J Z,et al.Evaluation of surface charge characteristics of soils using mutl-langmuir model(In Chinese).Acta Pedologica Sinica,2009,46(4):611-616
    [11]Goldberg S.Macroscopic experimental and modeling evaluation of selenite and selenate adsorption mechanisms on gibbsite.Soil Science Society of America Journal,2014,78(2):473-479
    [12]杨航,李敏.表面络合模式在天然体系中的应用研究进展.环境科学与技术,2012,35(S2):189-193Yang H,Li M.Advances in research of surface complexation models for natural system(In Chinese).Environmental Science&Technology,2012,35(S2):189-193
    [13]Pérez C,Antelo J,Fiol S,et al.Modeling oxyanion adsorption on ferralic soil,part 1:Parameter validation with phosphate ion.Environmental Toxicology and Chemistry,2014,33(10):2208-2216
    [14]Dzombak D A,Morel F.Surface complexation modeling:Hydrous ferric oxide.New York:John Wiley and Sons,1990
    [15]Milne C J,Kinniburgh D G,van Riemsdijk W H,et al.Generic NICA-Donnan model parameters for metal-ion binding by humic substances.Environmental Science&Technology,2003,37(5):958-971
    [16]杨敏,豆小敏,张昱.固液吸收机制和模型.环境科学学报,2006,26(10):1581-1585Yang M,Dou X M,Zhang Y.Mechanism and models of adsorption process on solid/water interface(In Chinese).Acta Scientiae Circumstantiae,2006,26(10):1581-1585
    [17]Mangold J E,Park C M,Liljestrand H M,et al.Surface complexation modeling of Hg(II)adsorption at the goethite/water interface using the Charge Distribution MultiSite Complexation(CD-MUSIC)model.Journal of Colloid and Interface Science,2014,418:147-161
    [18]Xie J,Gu X,Tong F,et al.Surface complexation modeling of Cr(VI)adsorption at the goethite-water interface.Journal of Colloid and Interface Science,2015,455:55-62
    [19]López R,Gondar D,Antelo J,et al.Study of the acidbase properties of a peat soil and its humin and humic acid fractions.European Journal of Soil Science,2012,63(4):487-494
    [20]Groenenberg J E,Lofts S.The use of assemblage models to describe trace element partitioning,speciation,and fate:Areview.Environmental Toxicology and Chemistry,2014,33(10):2181-2196
    [21]Vithanage M,Rajapaksha A U,Dou X,et al.Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils.Journal of Colloid and Interface Science,2013,406:217-224
    [22]Stamberg K,DrtinováB,FilipskáH,et al.Modelling of acid-base titration curves of mineral assemblages.Open Chemistry,2016,14(1):316-323
    [23]Borgnino L,Garcia M G,del Hidalgo M V,et al.Modeling the acid-base surface properties of aquatic sediments.Aquatic Geochemistry,2010,16(2):279-291
    [24]Weng L,Vega F A,van Riemsdijk W H.Competitive and synergistic effects in pH dependent phosphate adsorption in soils:LCD modeling.Environmental Science&Technology,2011,45(19):8420-8428
    [25]Pagnanelli F,Bornoroni L,Toro L.Proton binding onto soil by nonelectrostatic models:Isolation and identification of mineral contributions.Environmental Science&Technology,2004,38(20):5443-5449
    [26]Goldberg S,Lesch S M,Suarez D L.Predicting selenite adsorption by soils using soil chemical parameters in the constant capacitance model.Geochimica et Cosmochimica Acta,2007,71(23):5750-5762
    [27]徐仁扣,季国亮,王敬华.我国东部七省(闽、浙、赣、湘、鄂、苏、皖)生态系统对酸沉降的临界负荷的研究1.临界负荷的确定.土壤,2000,32(3):120-129Xu R K,Ji G L,Wang J H.Study on the critical load of acid deposition in seven provinces of the eastern China(Fujian,Zhejiang,Jiangxi,Hunan,Hubei,Jiangsu,Anhui)1.Determination of critical load(In Chinese).Soils,2000,32(3):120-129
    [28]Zhang F S,Zhang X N,Yu T R.Reactions of hydrogen ions with variable charge soils:I.Mechanisms of reaction.Soil Science,1991,151(6),436-443
    [29]Nagy N M,Kónya J.Study of pH-dependent charges of soils by surface acid-base properties.Journal of Colloid and Interface Science,2007,305(1):94-100
    [30]Luo C,Xie Y,Li F,et al.Adsorption of arsenate on iron oxides as influenced by humic acids.Journal of Environment Quality,2015,44(6):1729-1737
    [31]Keizer M G,van Riemsdijk W H.ECOSAT:equilibrium calculation of speciation and transport.Wageningen:Wageningen University,1994
    [32]Ge Y,MacDonald D,SauvéS,et al.Modeling of Cd and Pb speciation in soil solutions by WinHumicV and NICA-Donnan model.Environmental Modelling&Software,2005,20(3):353-359
    [33]Crawford M B.PHREEQEV:The incorporation of a version of Model V for organic complexation in aqueous solutions into the speciation code PHREEQE.Computers&Geosciences,Elsevier,1996,22(2):109-116
    [34]Meeussen J C L.ORCHESTRA:An object-oriented framework for implementing chemical equilibrium models.Environmental Science&Technology,2003,37(6):1175-1182
    [35]Gu X,Sun J,Evans L J.The development of a multisurface soil speciation model for Cd(II)and Pb(II):Comparison of two approaches for metal adsorption to clay fractions.Applied Geochemistry,2014,47:99-108
    [36]Janot N,Pinheiro J P,Botero W G,et al.PEST-ORCHESTRA,a tool for optimising advanced ion-binding model parameters:Derivation of NICA-Donnan model parameters for humic substances reactivity.Environmental Chemistry,2017,14(1):31-38
    [37]Xiong J,Koopal L K,Weng L,et al.Effect of soil fulvic and humic acid on binding of Pb to goethite-water interface:Linear additivity and volume fractions of HS in the Stern layer.Journal of Colloid and Interface Science,2015,457:121-130
    [38]Taubaso C,Afonso M D S,Sánchez R M T.Modelling soil surface charge density using mineral composition.Geoderma,2004,121(1-2):123-133
    [39]Sposito G.The surface chemistry of soils.Oxford:Oxford University Press,1984
    [40]吕海波,钱立义,常红帅,等.黏性土几种比表面积测试方法的比较.岩土工程学报,2016,38(1):124-130LüH B,Qian L Y,Chang H S,et al.Comparison of several methods for determining specific surface area of clayey soils(In Chinese).Chines Journal of Geotechnical Engineering,2016,38(1):124-130
    [41]Goldberg S.Application of surface complexation models to anion adsorption by natural materials.Environmental Toxicology and Chemistry,2014,33(10):2172-2180
    [42]Hegyesi N,Vad R T,Pukánszky B.Determination of the specific surface area of layered silicates by methylene blue adsorption:The role of structure,pH and layer charge.Applied Clay Science,2017,146:50-55
    [43]Groups S F.Surface chemistry and colloidal stability//The iron oxides.Weinheim,FRG:Wiley-VCH Verlag GmbH&Co.KGaA,2003:221-252
    [44]Davis J A,Coston J A,Kent D B,et al.Application of the surface complexation concept to complex mineral assemblages.Environmental Science&Technology,1998,32(19):2820-2828
    [45]Gran G.Determination of the equivalent point in potentiometric titrations.Acta Chemica Scandinavica,1950,4:559-577
    [46]Jolster?R,Gunneriusson L,Forsling W.Adsorption and surface complex modeling of silicates on maghemite in aqueous suspensions.Journal of Colloid and Interface Science,2010,342(2):493-498
    [47]Frini-Srasra N,Kriaa A,Srasra E.Acid-base properties of Tunisian palygorskite in aqueous medium.Russian Journal of Electrochemistry,2007,43(7):795-802
    [48]吴震生,张卫民,孙中溪,等.介孔α-Fe2O3表面配合反应平衡常数测定.化学学报,2010,68(8):769-774Wu Z S,Zhang W M,Sun Z X,et al.Surface complexation constants of mesoporous Fe2O3(In Chinese).Acta Chimica Sinica,2010,68(8):769-774
    [49]Pagnanelli F,Bornoroni L,Moscardini E,et al.Nonelectrostatic surface complexation models for protons and lead(II)sorption onto single minerals and their mixture.Chemosphere,2006,63(7):1063-1073
    [50]Davranche M,Lacour S,Bordas F,et al.An easy determination of the surface chemical properties of simple and natural solids.Journal of Chemical Education,2003,80(1):76-78
    [51]Davis J A,Kent D B.Surface complexation modeling in aqueous geochemistry.Reviews in Mineralogy,1990,23(1):177-260
    [52]Parks G A.The isoelectric points of solid oxides,solid hydroxides,and aqueous hydroxo complex systems.Chemical Reviews,1965,65(2):177-198
    [53]Kosmulski M.The pH-dependent surface charging and points of zero charge.Journal of Colloid and Interface Science,2011,353(1):1-15
    [54]Tournassat C,Davis J A,Chiaberge C,et al.Modeling the acid-base properties of montmorillonite edge surfaces.Environmental Science&Technology,2016,50(24):13436-13445
    [55]刘文新,储昭升,汤鸿霄,等.黄土表面酸碱性质的研究.环境科学学报,2003,23(1):6-10Liu W X,Chu Z S,Tang H X,et al.Study on surface acid-base properties of Chinese loess(In Chinese).Acta Scientiae Circumstantiae,2003,23(1):6-10
    [56]Szekeres M,Tombácz E.Surface charge characterization of metal oxides by potentiometric acid-base titration,revisited theory and experiment.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,414:302-313
    [57]Gu X,Xie J,Wang X,Wang X R,et al.A simple model to predict chromate partitioning in selected soils from China.Journal of Hazardous Materials,2017,322:421-429
    [58]Kaiser K,Guggenberger G.Mineral surfaces and soil organic matter.European Journal of Soil Science 2003,54(2):219-236
    [59]Stumm W.Chemistry of the solid-water interface:processes at the mineral-water and particle-water interface in natural systems.John Wiley&Son Inc,1992
    [60]Tan W,Xiong J,Li Y,et al.Proton binding to soil humic and fulvic acids:Experiments and NICA-Donnan modeling.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,436:1152-1158
    [61]Goldberg S,Suarez D L,Basta N T,et al.Predicting boron adsorption isotherms by midwestern soils using the constant capacitance model.Soil Science Society of America Journal,2004,68(3):795-801
    [62]Turner B F,Fein J B.Protofit:A program for determining surface protonation constants from titration data.Computers&Geosciences,2006,32(9):1344-1356
    [63]Kinniburgh D G.Technical report WD/93/23:FIT user guide.British Geological Survey,1993
    [64]Brendler V,Vahle A,Arnold T,et al.RES3T-Rossendorf expert system for surface and sorption thermodynamics.Journal of Contaminant Hydrology,2003,61(1-4):281-291
    [65]Hru?ka J,K?hler S,Laudon H,et al.Is a universal model of organic acidity possible:Comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones.Environmental Science&Technology,2003,37(9):1726-1730
    [66]Filius J D,Lumsdon D G,Meeussen J C L,et al.Adsorption of fulvic acid on goethite.Geochimica et Cosmochimica Acta,2000,64(1):51-60
    [67]Weng L,van Riemsdijk W H,Hiemstra T.Effects of fulvic and humic acids on arsenate adsorption to goethite:Experiments and modeling.Environmental Science&Technology,2009,43(19):7198-7204
    [68]Weng L,van Riemsdijk W H,Hiemstra T.Humic nanoparticles at the oxide-water interface:Interactions with phosphate ion adsorption.Environmental Science&Technology,2008,42(23):8747-8752
    [69]Vermeer A W,McCulloch J K,van Riemsdijk W H,et al.Metal ion adsorption to complexes of humic acid and metaloxides:Deviations from the additivity rule.Environmental Science&Technology,1999,33(21):3892-3897
    [70]Filius J D,Meeussen J C L,Lumsdon D G,et al.Modeling the binding of fulvic acid by goethite:The speciation of adsorbed FA molecules.Geochimica et Cosmochimica Acta,2003,67(8):1463-1474
    [71]Ye Y,Chen Z,Montavon G,et al.Surface complexation modeling of Eu(III)adsorption on silica in the presence of fulvic acid.Science China Chemistry,2014,57(9):1276-1282
    [72]Cui Y,Weng L.Arsenate and phosphate adsorption in relation to oxides composition in soils:LCD Modeling.Environmental Science&Technology,2013,47(13):7269-7276
    [73]Goldberg S,Lesch S M,Suarez D L,et al.Predicting arsenate adsorption by soils using soil chemical parameters in the constant capacitance model.Soil Science Society of America Journal,2005,69(5):1389-1398
    [74]Djomgoue P,Njopwouo D.FT-IR spectroscopy applied for surface clays characterization.Journal of Surface Engineered Materials and Advanced Technology,2013,3(4):275-282
    [75]Hong Z N,Li J Y,Jiang J,et al.Competition between bacteria and phosphate for adsorption sites on gibbsite:An in-situ ATR-FTIR spectroscopic and macroscopic study.Colloids&Surfaces B Biointerfaces,2016,148:496-502
    [76]Sulpizi M,Gaigeot M P,Sprik M.The silica-water interface:How the silanols determine the surface acidity and modulate the water properties.Journal of Chemical Theory and Computation,2012,8(3):1037-1047
    [77]Liu X,Cheng J,Sprik M,et al.Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulations.Geochimica et Cosmochimica Acta,2014,140:410-417
    [78]Prandel L V,Saab S C,Brinatti A M,et al.Mineralogical analysis of clays in hardsetting soil horizons,by X-ray fluorescence and X-ray diffraction using Rietveld method.Radiation Physics and Chemistry,2014,95:65-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700