用户名: 密码: 验证码:
典型岩溶槽谷区土壤CO_2浓度变化对隧道建设的响应——以重庆市中梁山岩溶槽谷为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Change in soil CO_2 concentration due to tunnel construction in a typical karst valley: A case study of Zhongliang Mountain, Chongqing City
  • 作者:吴韦 ; 贾亚男 ; 蒋勇军 ; 彭学义 ; 段世辉 ; 刘九缠 ; 王正雄 ; 卫敏洁
  • 英文作者:WU Wei;JIA Yanan;JIANG Yongjun;PENG Xueyi;DUAN Shihui;LIU Jiuchan;WANG Zhengxiong;WEI Minjie;Chongqing Key Laboratory of Karst Environment;School of Geographical Sciences, Southwest University;
  • 关键词:岩溶槽谷区 ; 隧道建设 ; 土壤CO_2浓度 ; 环境因子
  • 英文关键词:karst trough;;tunnel construction;;soil CO_2 concentration;;environmental factors
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:西南大学地理科学学院;岩溶环境重庆市重点实验室;
  • 出版日期:2019-08-23
  • 出版单位:生态学报
  • 年:2019
  • 期:16
  • 基金:国家重点研发计划项目(2016YFC0502306)
  • 语种:中文;
  • 页:403-414
  • 页数:12
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S154.1;U455
摘要
为了解重庆市中梁山岩溶槽谷区隧道建设对土壤CO_2浓度变化特征的影响,于2017年12月1日至2018年11月25日对中梁山岩溶槽谷区的隧道影响区和非隧道影响区典型的白蜡树林(FC)和于2017年3月22日—2018年1月18日对耕地(CU)、灌丛(SH)、竹林(BA)下土壤CO_2浓度及其相关的环境因子进行研究,探讨了隧道影响和非隧道影响的岩溶区土壤CO_2浓度变化规律及其影响因子。研究表明:隧道影响区(A区)土壤CO_2浓度低于非隧道影响区(B区),A区A-CU、A-SH、A-BA和A-FC土壤CO_2浓度的平均值分别为4479.26、6053.10、8152.70 mg/m~3和17162.47 mg/m~3,B区B-CU、B-SH、B-BA和B-FC分别为6244.67、6647.01、9422.94 mg/m~3和18396.09 mg/m~3。但隧道影响区和非隧道影响区的土壤CO_2浓度具有相同的垂直和季节变化趋势,在垂直方向上,土壤CO_2浓度随土壤深度的增加而增加,在季节变化上,雨季(夏季和秋季)土壤CO_2浓度大于旱季(冬季和春季)。经相关分析发现土壤温度是影响土壤CO_2浓度变化的主控因子,土壤CO_2浓度随土壤温度的升高而升高,降水较多时土壤含水率过高,会抑制土壤CO_2的生产,同时,土壤理化性质也对土壤CO_2浓度具有一定的影响。隧道影响区土壤CO_2浓度的变化受外界环境变化的影响大。
        To understand the effect of tunnel construction in a karst ridge-trough area(Zhongliang Mountain, Beibei District, Chongqing) on the characteristics of the soil CO_2 concentration, we analyzed the soil CO_2 concentration and environmental factors of Fraxinus chinensis(FC) at 0—20 cm and 20—40 cm in tunnel affected and non-tunnel affected areas from December 1, 2017 to November 25, 2018. In addition, the soil CO_2 concentration and its related environmental factors under cultivated land(CU), shrub(SH), and bamboo forest(BA) were studied from March 22, 2017 to January 18, 2018 to discuss the variation of the soil CO_2 concentration in karst areas affected and not affected by the tunnel. The results showed that(1) the average values for the soil CO_2 concentrations of A-CU, A-SH, A-BA, and A-FC in area A(tunnel affected area) were 4479.26 mg/m~3, 6053.10 mg/m~3, 8152.70 mg/m~3, and 17162.47 mg/m~3, respectively, and those of B-CU, B-SH, B-BA, and B-FC in area B(non-tunnel affected area) were 6244.67 mg/m~3, 6647.01 mg/m~3, 9422.94 mg/m~3, and 18396.09 mg/m~3, respectively. The soil CO_2 concentration in the tunnel affected area was lower than that in the non-tunnel affected area.(2) However, the soil CO_2 concentration in the tunnel affected and non-tunnel affected areas had the same vertical and seasonal variation trends: in the vertical change, the soil CO_2 concentration increased with increase in soil depth, and in the seasonal change, the soil CO_2 concentration in the rainy season(summer and autumn) was greater than that in the dry season(winter and spring).(3) Correlation analysis showed that the soil temperature was the main controlling factor affecting the soil CO_2 concentration. Additionally, the soil CO_2 concentration increased with the soil temperature, except during the rainy season, where the soil moisture inhibited the production of CO_2 in the soil. Moreover, the soil physical and chemical properties could also affect the soil CO_2 concentration.(4) Finally, the changes in the soil CO_2 concentration in the tunnel affected areas were more susceptible to changes in the external environment.
引文
[1] Houghton J T,Ding Y,Griggs D J,Noguer M,van der Linden P J,Dai X,Maskell K,Johnson C A.IPCC Third Assessment Report:Climate Change 2001:the Scienti?c Basis.Cambridge:Cambridge University Press,2001:994- 994.
    [2] Schimel D S,Braswell B H,Holland E A,McKeown R,Ojima D S,Painter T H,Parton W J,Townsend A R.Climatic,edaphic,and biotic controls over storage and turnover of carbon in soils.Global Biogeochemical Cycles,1994,8(3):279- 293.
    [3] Schlesinger W H.Carbon balance in terrestrial detritus.Annual Review of Ecology and Systematics,1977,8:51- 81.
    [4] Lin G H,Ehleringer J R,Rygiewicz P T,Johnson M G,Tingey D T.Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms.Global Change Biology,1999,5(2):157- 168.
    [5] Bajracharya R M,Lai R,Kimble J M.Erosion effects on carbon dioxide concentration and carbon flux from an Ohio Alfisol.Soil Science Society of America Journal,2000,64(2):694- 700.
    [6] Jong E D,Schappert H J V.Calculation of soil respiration and activity from CO2 profiles in the soil.Soil Science,1972,113(5):328- 333.
    [7] 贝费尔.土壤物理学.周传槐,译.北京:农业出版社,1983:234- 240.
    [8] 戴万宏,王益权,黄耀,刘军,赵磊.土剖面CO2浓度的动态变化及其受环境因素的影响.土壤学报,2004,41(5):827- 831.
    [9] Amundson R G,Davidson E A.Carbon dioxide and nitrogenous gases in the soil atmosphere.Journal of Geochemical Exploration,1990,38(1/2):13- 41.
    [10] Buyanovsky G A,Wagner G H.Annual cycles of carbon dioxide level in soil air.Soil Science Society of America Journal,1983,47(6):1139- 1145.
    [11] 俞锦标,李春华,赵培道,胡兴华,袁东风.贵州普定县岩溶地区土壤空气中CO2含量分布及溶蚀作用的研究.中国岩溶,1985(4):31- 37.
    [12] 唐灿,周平根.北京典型溶洞区土壤中的CO2及其对岩溶作用的驱动.中国岩溶,1999(3):18- 22.
    [13] 梁福源,宋林华,王富昌,郑炳元,张丽萍.路南石林地区土壤空气中CO2浓度分布规律与土下溶蚀形态研究.中国岩溶,2000,19(2):180- 187.
    [14] 李林立,况明生,张远瞩,蒋勇军,沈立成,李元庆.重庆金佛山岩溶区不同植被条件下土壤-植被系统CO2浓度日变化.农村生态环境,2005,21(3):67- 70.
    [15] Liu Z H,Li Q,Sun H L,Wang J L.Seasonal,diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China:Soil CO2 and dilution effects.Journal of Hydrology,2007,337(1/2):207- 223.
    [16] 苏春田,单海平,唐健生,夏日元,关碧珠,邓志勇,龙强.湘西洛塔不同深度土壤CO2浓度变化研究.河南农业科学,2007,(12):72- 75.
    [17] 李涛,曹建华,张美良,黄艳梅,陈家瑞,严毅萍,李光超,朱晓燕.桂林盘龙洞岩溶表层带土壤CO2浓度的季节变化研究.中国岩溶,2011,30(3):348- 353.
    [18] 蓝芙宁,王文娟,覃小群,黄奇波,刘朋雨,安树青,唐绍政.土地利用和覆被变化对岩溶区土壤CO2浓度的影响.中国岩溶,2011,30(4):449- 455.
    [19] 李光超,曹建华.岩溶区板栗树下旱季和雨季土壤CO2浓度的研究.中国农学通报,2012,28(1):39- 43.
    [20] 关笑坤,王蓉.影响土壤中二氧化碳浓度分布的因素分析.地下水,2014,36(3):18- 20,23- 23.
    [21] 袁道先.全球岩溶生态系统对比:科学目标和执行计划.地球科学进展,2001,16(4):461- 466.
    [22] 陈洪松,王克林.西南喀斯特山区土壤水分研究.农业现代化研究,2008,29(6):734- 738.
    [23] Jassal R,Black A,Novak M,Morgenstern K,Nesic Z,Gaumont-Guay D.Relationship between soil CO2 concentrations and forest-floor CO2 effluxes.Agricultural and Forest Meteorology,2005,130(3/4):176- 192.
    [24] Bekele A,Kellman L,Beltrami H.Soil Pro?le CO2 concentrations in forested and clear cut sites in Nova Scotia,Canada.Forest Ecology and Management,2007,242(2/3):587- 597.
    [25] Vargas R,Baldocchi D D,Allen M F,Bahn M,Black TA,Collins S L,Curiel Yuste J,Hirano T,Jassal R S,Pumpanen J,Tang J.Looking deeper into the soil:biophysical controls and seasonal lags of soil CO2 production and efflux.Ecological Applications,2010,20(6):1569- 1582.
    [26] Magnusson T.Studies of the soil atmosphere and related physical site characteristics in mineral forest soils.Journal of Soil Science,1992,43(4):767- 790.
    [27] Oh N H,Kim H S,Richter D D Jr.What regulates soil CO2 concentrations?A modeling approach to CO2 diffusion in deep soil pro?les.Environmental Engineering Science,2005,22(1):38- 45.
    [28] Fernandez I J,Son Y W,Kraske C R,Rustad L E,David M B.Soil carbon dioxide characteristics under different forest types and after harvest.Soil Science Society of America Journal,1993,57(4):1115- 1121.
    [29] Jassal R S,Black T A,Drewitt G B,Novak M D,Gaumont-Guay D,Nesic Z.A model of the production and transport of CO2 in soil:predicting soil CO2 concentrations and CO2 efflux from a forest ?oor.Agricultural and Forest Meteorology,2004,124(3/4):219- 236.
    [30] Hamada Y,Tanaka T.Dynamics of carbon dioxide in soil profiles based on long-term field observation.Hydrological Process,2001,15(10):1829- 1845.
    [31] Rustad L E,Fernandez I J.Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine,USA.Global Change Biology,1998,4(6):597- 605.
    [32] Zhang Z S,Li X R,Nowak R S,Wu P,Gao Y H,Zhao Y,Huang L,Hu Y G,Jia R L.Effect of sand-stabilizing shrubs on soil respiration in a temperate desert.Plant and Soil,2013,367(1/2):449- 463.
    [33] De Nobili M,Contin M,Brookes P C.Microbial biomass dynamics in recently air-dried and rewetted soils compared to others stored air-dry for up to 103 years.Soil Biology and Biochemistry,2006,38(9):2871- 2881.
    [34] Fierer N,Schimel J P,Holden P A.Influence of drying-rewetting frequency on soil bacterial community structure.Microbial Ecology,2003,45(1):63- 71.
    [35] 吴威,况明生,魏秉铎,孙艳丽,张远瞩.亚热带岩溶山区植被演替和夏季土壤CO2浓度动态关系.西南师范大学学报:自然科学版,2004,29(2):289- 293.
    [36] Rayment M B,Jarvis P G.Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest.Soil Biology and Biochemistry,2000,32(1):35- 45.
    [37] 吴雅琼,刘国华,傅伯杰,郭玉华,胡婵娟.森林生态系统土壤CO2释放随海拔梯度的变化及其影响因子.生态学报,2007,27(11):4678- 4685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700