用户名: 密码: 验证码:
氨法烟气脱硫塔外氧化技术的模拟与优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation and optimization of oxidation outside of tower technique in ammonia-based flue gas desulfurization system
  • 作者:李一鸣 ; 刘思思 ; 张健 ; 苑兴洲 ; 张晓欣 ; 封瑞江 ; 邹雄 ; 董宏光
  • 英文作者:LI Yi-ming;LIU Si-si;ZHANG Jian;YUAN Xing-zhou;ZHANG Xiao-xin;FENG Rui-jiang;ZOU Xiong;DONG Hong-guang;College of Chemistry,Chemical Engineering and Environmental Engineering,Liaoning Shihua University;School of Chemical Engineering, Dalian University of Technology;
  • 关键词:氨法脱硫 ; 塔外氧化 ; 氨逃逸 ; Aspen ; plus ; 硫酸铵
  • 英文关键词:ammonia-based flue gas desulfurization;;oxidation outside of tower;;ammonia escape;;Aspen plus;;ammonium sulfate
  • 中文刊名:化学工程
  • 英文刊名:Chemical Engineering(China)
  • 机构:辽宁石油化工大学化学化工与环境学部;大连理工大学化工学院;
  • 出版日期:2019-03-15
  • 出版单位:化学工程
  • 年:2019
  • 期:03
  • 基金:辽宁省创新创业改革试点专业建设基金项目
  • 语种:中文;
  • 页:12-16+49
  • 页数:6
  • CN:61-1136/TQ
  • ISSN:1005-9954
  • 分类号:X701.3
摘要
氨法脱硫塔外氧化技术是在传统的塔内直通空气氧化技术的基础上加以改进得到的一种新型技术。该技术将氧化环节移至塔外氧化器,使得塔内气量减小,出口烟气中氨逃逸量及气溶胶含量明显降低,且结晶颗粒外观得到改善。使用Aspen plus软件对氨法脱硫塔外氧化技术全流程进行了严格的稳态模拟,并对喷淋层分流比,吸收液pH,烟气温度,浓缩段液气比等进行了重新优化设计。塔外氧化工艺最佳操作条件为:喷淋层分流比为0.7,吸收液pH为6.1,吸收段烟气温度为53℃,浓缩段液气比为0.13左右。与传统的塔内直通空气氧化相比,塔外氧化技术不仅可降低50%以上的氨逃逸,而且控制方案要求较为简单,操作方便,更能适应日趋严格的环保要求。
        Oxidation outside of tower is a new technique in ammonia-based fuel gas desulfurization system, improved from the technique of traditional direct air oxidation. It takes oxidation process to the oxygenizer outside the tower, reducing the gas flow rate in tower and the escape of ammonia in the exiting exhaust gas, and even improving the crystal grain appearance. Rigorous steady-state simulation was processed on the whole flow of the new technology by Aspen plus. Besides, splitting fraction of spray system, pH of absorbent, temperature of exhaust gas and the liquid-gas ratio of enrichment section were redesigned and optimized. The simulation results indicate that the best operation condition for the new process are as follows: splitting fraction of spray system is 0.7, pH of absorbent is 6.1, temperature of exhaust gas is 53 ℃ and liquid-gas ratio of enrichment section is 0.13. Compared with the traditional technology, the new technique can not only decrease the ammonia escape amount up to 50%, but also makes the control scheme demands and the operation more easy and convenient, so that it can accommodate the increasingly stringent environmental requirements.
引文
[1]林永明.大型石灰石-石膏湿法喷淋脱硫技术研究及工程应用[D].杭州:浙江大学,2006.
    [2]范学友,贾勇,钟泰.氨吸收法同时脱硫脱硝的实验研究[J].化工进展,2012,31(1):213-216.
    [3]莫建松.双碱法烟气脱硫工艺的可靠性研究及工业应用[D].杭州:浙江大学,2006.
    [4]马云,张吉磊,王新星,等.天然气甲基二乙醇胺法脱硫脱碳工艺过程模拟分析[J].化学工程,2015,43(4):69-74.
    [5]赵旭东,高继慧,吴少华,等.干法-半干法钙基烟气脱硫技术研究进展及趋势[J].化学工程,2003,31(4):64-67.
    [6]邹洋,夏凌风,王运东,等.燃煤电厂烟气脱硫技术最新进展[J].化工进展,2011,30(增):702-708.
    [7]何翼云.氨法烟气脱硫技术及其进展[J].化工环保,2012,32(2):141-144.
    [8]武春锦,吕武华,梅毅,等.湿法脱硫技术及运行经济性分析[J].化工进展,2015,34(12):4368-4374.
    [9]崔建祥,赵焰.氨法脱硫副产物亚硫酸铵的塔外氧化[J].电力环境保护,2009,25(3):21-22.
    [10]史永永,李海洋,张慧,等.氨法烟气脱硫工艺过程模拟与优化[J].化学工程,2012,40(11):68-73.
    [11]周理明,史永永,李海洋,等.氨法烟气脱硫过程的工艺优化[J].化学工程,2014,42(4):8-12.
    [12]MAROCCO L.Modeling of the fluid dynamics and SO2absorption in a gas-liquid reactor[J].Chemical Engineering Journal,2010,162(1):217-226.
    [13]MAURER G.On the solubility of volatile weak electrolytes in aqueous solutions[C]//Thermodynamics of aqueous systems with industrial applications(ACS Symposium Series).American:American Chemical Society,1980:139-172.
    [14]彭健,叶世超,柳海钢,等.湿壁塔氨法烟气脱硫的非平衡模型[J].化学工程,2013,41(8):48-52.
    [15]HUANG Xianming,DING Jie,JIA Yong,et.al.Kinetics of sulfite oxidation in the simultaneous desulfurization and denitrification of the oxidation-absorption process[J].Chemical Engineering Technology,2015,38(5):1-8.
    [16]周宇.烟气脱硫产物亚硫酸铵非催化氧化动力学[J].化工时刊,2012,26(8):4-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700