用户名: 密码: 验证码:
牦牛BoLA-I基因mRNA及其相关miRNAs在牦牛不同组织器官中表达分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Expression of BoLA-I gene mRNA and its associated miRNAs in different tissues and organs of yak
  • 作者:徐业芬 ; 孙宏宇 ; 索朗斯珠 ; 牛家强 ; 贡嘎 ; 郭敏 ; 王玉恒 ; 张鹏宇 ; 张雷 ; 旦巴次仁 ; 王刚 ; 罗润波
  • 英文作者:XU Yefen;SUN Hongyu;Suolangsizhu;NIU Jiaqiang;Gongga;GUO Min;WANG Yuheng;ZHANG Pengyu;ZHANG Lei;Danbaciren;WANG Gang;LUO Runbo;College of Animal Science,Tibet Agriculture and Animal Husbandry College;Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease Research,Tibet Agriculture and Animal Husbandry College;Animal Health and Plant Quarantine Supervision Office,Changdu Agriculture and Animal Husbandry Bureau;College of Animal Science and Technology,China Agricultural University;
  • 关键词:牦牛 ; BoLA-I ; mRNA ; miRNA ; 组织表达谱
  • 英文关键词:yak;;BoLA-I;;mRNA;;miRNA;;tissue expression profile
  • 中文刊名:中国农业大学学报
  • 英文刊名:Journal of China Agricultural University
  • 机构:西藏农牧学院动物科学学院;西藏农牧学院西藏高原动物疫病研究自治区高校重点实验室;西藏自治区昌都市农牧局动物卫生及植物检疫监督所;中国农业大学动物科学技术学院;
  • 出版日期:2019-05-15
  • 出版单位:中国农业大学学报
  • 年:2019
  • 期:05
  • 基金:国家肉牛牦牛产业体系项目(CARS-37);; 国家自然科学基金项目(31460604);; 西藏农牧学院学科建设项目
  • 语种:中文;
  • 页:53-62
  • 页数:10
  • CN:11-3837/S
  • ISSN:1007-4333
  • 分类号:S823.85
摘要
为了解牦牛BoLA-I基因mRNA组织表达谱,并探索可能靶定BoLA-I基因的miRNAs,利用RT-PCR技术对牦牛BoLA-I基因mRNA在牦牛肝、脾、肺、肾、肌肉、卵巢、小肠、下颌淋巴结、大肠和肠系膜淋巴结等10种组织的表达谱进行分析,再通过Targetscan和miRBase软件来预测可能靶定BoLA-I基因的miRNAs,检测其在10种牦牛组织中的表达情况。结果表明:BoLA-I基因mRNA在检测的10种牦牛组织中均有表达,尤其在免疫器官组织中广泛表达,在牦牛的肠系膜淋巴结组织表达水平极显著高于小肠和大肠组织(P<0.01);预测到的可能靶定牦牛BoLA-I基因的miRNA共有28个,从中选择了6个进行组织表达谱分析,发现bta-miR-759、bta-miR-142-5p、bta-miR-665、bta-miR-2322-5p、bta-miR-199a-3p与牦牛BoLA-I基因共表达;除卵巢外,bta-miR-219-5p在其他组织中均有表达,且在肝脏组织中的表达水平极显著高于其他组织(P<0.01)。bta-miR-142-5p在肠系膜淋巴结中表达量极显著高于其他组织(P<0.01)。由此推测,牦牛BoLA-I基因及其预测的miRNA可能在牦牛组织中起重要作用。
        The aims of this study were to understand the mRNA expression profile of yak BoLA-I gene,and to explore possible miRNAs targeting to BoLA-I gene.The mRNA expression of BoLA-I gene in 10 types yak tissue,e.g.liver,spleen,lung,kidney,muscle,ovary,small intestine,jaw,large intestine and mesenteric lymph nodes were investigated by RT-PCR.The possible miRNAs targeting to BoLA-I gene were predicted by TargetScan and miRBase software.Their tissue expression profiles were then analyzed by RT-PCR.The results showed that the mRNA of BoLA-I gene was expressed in all 10 detected yak tissues,especially widely expressed in immune organs.The expression level of mesenteric lymph nodes in yak was significantly higher than that in small intestine and large intestine(P<0.01).It was predicted that there were 28 miRNAs that could target the gene of yak BoLA-I,and 6 miRNAs among them were selected for expression analysis.It was found that bta-miR-759,the bta-miR-142-5 p,bta-miR-665,bta-miR-2322-5 p,and bta-miR-199-a-3 p were co-expressed with yak BoLA-I gene mRNA.bta-miR-219-5 p was expressed in other tissues except for ovaries,and the expression of bta-mir-142-5 p in mesenteric lymph nodes was significantly higher than that in other tissues(P<0.01).The results inferred that the BoLA-I gene and its predicted miRNA might play an important role in yak tissue.
引文
[1] 佟彬,张立,李光鹏.中国肉牛分子与基因修饰育种研究进展[J].遗传,2017,39(11):984-1015Tong B,Zhang L,Li G P.Progress in the molecular and genetic modification breeding of beef cattle in China[J].Hereditas,2017,39(11):984-1015 (in Chinese)
    [2] Edwards S V,Hedrick P W.Evolution and ecology of MHC molecules:From genomics to sexual selection[J].Trends in Ecology & Evolution,1998,13(8):305-311
    [3] Blum A,Miller H.The major histocompatibility complex and inflammation[J].Southern Medical Journal,2000,93(2):169-172
    [4] Amoren A B,Stone W H.Serologically defined (SD) locus in cattle[J].Science,1978,201(4351):159-160
    [5] Fries R,Hediger R,Stranzinger G.Tentative chromosomal localization of the bovine major histocompatibility complex by in situ hybridization[J].Animal Genetics,2009,17(2):287-294
    [6] Chardon P,Renard C,Gaillard C R,Vaiman M.The porcine major histocompatibility complex and related paralogous regions:A review[J].Genetics Selection Evolution,2000,32(2):109-128
    [7] Glaberman S,du Pasquier L,Caccone A.Characterization of a nonclassical class I MHC gene in a reptile,the Galápagos marine iguana (Amblyrhynchus cristatus)[J].PLoS One,2008,3(8):e2859
    [8] Allan A J,Sanderson N D,Gubbins S,Ellis S A,Hammond J A.Cattle NK cell heterogeneity and the influence of MHC class I[J].Journal of Immunology,2015,195(5):2199-2206
    [9] Benedictus L,Luteijn R D,Otten H,Jan Lebbink R,van Kooten P J S,Wiertz E J H J,Rutten V P M G,Koets A P.Pathogenicity of Bovine Neonatal Pancytopenia-associated vaccine-induced alloantibodies correlates with Major Histocompatibility Complex class I expression[J].Scientific Reports,2015,5:12748
    [10] Hayashi T,Mekata H,Sekiguchi S,Kirino Y,Mitoma S,Honkawa K,Horii Y,Norimine J.Cattle with the BoLA class II DRB3*0902 allele have significantly lower bovine leukemia proviral loads[J].Journal of Veterinary Medical Science,2017,79(9):1552-1555
    [11] 田知利,陈杰,胡江,罗玉柱,刘秀,李少斌,郭淑珍,牟永娟.牦牛和普通牛DRB1*Intron1-exon2序列变异分析[J].华北农学报,2016,31(3):72-79Tian Z L,Chen J,Hu J,Luo Y Z,Liu X,Li S B,Guo S Z,Mu Y J.Sequence variation at BoLA-DRBl*Intron1-exon2 in yak and cattle[J].Acta Agriculturae Boreali-Sinica,2016,31(3):72-79 (in Chinese)
    [12] Aarestrup F M,Jensen N E,?sterg?rd H.Analysis of associations between major histocompatibility complex (BoLA) class I haplotypes and subclinical mastitis of dairy cows[J].Journal of Dairy Science,1995,78(8):1684-1692
    [13] Maillard J C,Berthier D,Chantal I,Thevenon S,Sidibé I,Stachurski F,Belemsaga D,Razafindra?bé H,Elsen J M.Selection assisted by a BoLA-DR/DQ haplotype against susceptibility to bovine dermatophilosis[J].Genetics Selection Evolution,2003,35(S1):193-200
    [14] Iwakawa H O,Tomari Y.The functions of MicroRNAs:mRNA decay and translational repression[J].Trends in Cell Biology,2015,25(11):651-665
    [15] Park J H,Shin S Y,Shin C.Non-canonical targets destabilize microRNAs in human argonautes[J].Nucleic Acids Research,2017,45(4):1569-1583
    [16] Bartel D P.MicroRNAs:Target recognition and regulatory functions[J].Cell,2009,136(2):215-233
    [17] Jonas S,Izaurralde E.Towards a molecular understanding of microRNA-mediated gene silencing[J].Nature Reviews Genetics,2015,16(7):421-433
    [18] Hwang H W,Mendell J T.MicroRNAs in cell proliferation,cell death,and tumorigenesis[J].British Journal of Cancer,2006,94(6):776-780
    [19] Lewis B P,Shih I H,Jones-Rhoades M W,Bartel D P,Burge C B.Prediction of mammalian microRNA targets[J].Cell,2003,115(7):787-798
    [20] Islam F,Gopalan V,Vider J,Lu C T,Lam A K Y.MiR-142-5p act as an oncogenic microRNA in colorectal cancer:Clinicopathological and functional insights[J].Experimental and Molecular Pathology,2018,104(1):98-107
    [21] Danger R,Paul C,Giral M,Lavault A,Foucher Y,Degauque N,Pallier A,Durand M,Castagnet S,van Huyen J P D,Delahousse M,Renaudin K,Soulillou J P,Brouard S.Expression of miR-142-5p in peripheral blood mononuclear cells from renal transplant patients with chronic antibody-mediated rejection[J].PLoS One,2013,8(4):e60702
    [22] Xu R J,Bi C L,Song J T,Wang L,Ge C,Liu X X,Zhang M.Upregulation of miR-142-5p in atherosclerotic plaques and regulation of oxidized low-density lipoprotein-induced apoptosis in macrophages[J].Molecular Medicine Reports,2015,11(5):3229-3234
    [23] 李秋玲,鞠志花,贾祥捷,黄金明,李建斌,李荣岭,李芳,王长法,仲跻峰.中国荷斯坦牛HSF1基因microRNA SNPs与耐热性能的相关性研究[J].中国农业科学,2011,44(3):570-578Li Q L,Ju Z H,Jia X J,Huang J M,Li J B,Li R L,Li F,Wang C F,Zhong J F.Identification of MicroRNA SNPs of HSF1 gene and their association with heat tolerance in Chinese Holstein[J].Scientia Agricultura Sinica,2011,44(3):570-578 (in Chinese)
    [24] Chen H Y,Liu C,Jiang H,Gao Y,Xu M Q,Wang J W,Liu S Y,Fu Y,Sun X L,Xu J J,Zhang J B,Dai L S.Regulatory role of miRNA-375 in expression of BMP15/GDF9 receptors and its effect on proliferation and apoptosis of bovine cumulus cells[J].Cellular Physiology and Biochemistry,2017,41(2):439-450
    [25] Lewis B P,Burge C B,Bartel D P.Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are MicroRNA targets[J].Cell,2005,120(1):15-20
    [26] 肖雅.奶牛BoLA-Ⅰ重链在子宫上皮细胞的表达调控及其在主要组织细胞分布的研究[D].武汉:华中农业大学,2014Xiao Y.The expression regulation in uterial epithelial cells in vitro and the distribution in main tissues of BoLA-Ⅰ heavy chain in dairy cows[D].Wuhan:Huazhong Agricultural University,2014 (in Chinese)
    [27] 姜范波,陈晨,邓亚军,于军,胡松年.猪的主要组织相容性复合体表达谱分析[J].科学通报,2005,50(7):659-668Jiang F B,Chen C,Deng Y J,Yu J,Hu S N.The major histocompatibility complex expression profile analysis of pigs[J].Chinese Science Bulletin,2005,50(7):659-668 (in Chinese)
    [28] Pang J C,Gao F Y,Lu M X,Ye X,Zhu H P,Ke X L.Major histocompatibility complex class IIA and IIB genes of Nile tilapia Oreochromis niloticus:Genomic structure,molecular polymorphism and expression patterns[J].Fish & Shellfish Immunology,2013,34(2):486-496
    [29] Luo N,Nixon M J,Gonzalez-Ericsson P I,Sanchez V,Opalenik S R,Li H,Zahnow C A,Nickels M L,Liu F,Tantawy M N,Sanders M E,Manning H C,Balko J M.DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer[J].Nature Communications,2018,9(1):248
    [30] Takeshima S N,Sasaki S,Meripet P,Sugimoto Y,Aida Y.Single nucleotide polymorphisms in the bovine MHC region of Japanese Black cattle are associated with bovine leukemia virus proviral load[J].Retrovirology,2017,14(1):24
    [31] Nabekura T,Lantier L L.Activating receptors for Self-MHC class I enhance effector functions and memory differentiation of NK cells during mouse cytomegalovirus infection[J].Immunity,2016,45(1):74-82
    [32] Rutigliano H M,Thomas A J,Wilhelm A,Sessions B R,Hicks B A,Schlafer D H,White K L,Davies C J.Trophoblast major histocompatibility complex class I expression is associated with immune-mediated rejection of bovine fetuses produced by cloning[J].Biology of Reproduction,2016,95(2):39
    [33] Xiong G B,Zhang G N,Xiao Y,Niu B Z,Qiu H Z,Wu B,Lin G L,You L,Shu H.MicroRNA-219-5p functions as a tumor suppressor partially by targeting platelet-derived growth factor receptor alpha in colorectal cancer[J].Neoplasma,2015,62(6):855-863
    [34] Wang Q H,Zhu L R,Jiang Y S,Xu J F,Wang F R,He Z X.miR-219-5p suppresses the proliferation and invasion of colorectal cancer cells by targeting calcyphosin[J].Oncology Letters,2017,13(3):1319-1324
    [35] Li M Y,Zhang S H,Qiu Y,He Y,Chen B L,Mao R,Cui Y,Zeng Z R,Chen M H.Upregulation of miR-665 promotes apoptosis and colitis in inflammatory bowel disease by repressing the endoplasmic reticulum stress components XBP1 and ORMDL3[J].Cell Death & Disease,2017,8(3):e2699
    [36] Guan J,Liu Z,Xiao M,Hao F,Wang C,Chen Y,Lu Y,Liang J.MicroRNA-199a-3p inhibits tumorigenesis of hepatocellular carcinoma cells by targeting ZHX1/PUMA signal[J].American Journal of Translational Research,2017,9(5):2457-2465
    [37] Zheng Y,Chen K L,Zheng X M,Li H X,Wang G L.Identification and bioinformatics analysis of microRNAs associated with stress and immune response in serum of heat-stressed and normal holstein cows[J].Cell Stress and Chaperones,2014,19(6):973-981
    [38] Kasimanickam V,Kastelic J.Circulating cell-free mature microRNAs and their target gene prediction in bovine metritis[J].Scientific Reports,2016,6:29509
    [39] Do D N,Dudemaine P L,Fomenky B E,Ibeagha-Awemu E M.Integration of miRNA weighted gene co-expression network and miRNA-mRNA co-expression analyses reveals potential regulatory functions of miRNAs in calf rumen development[J].Genomics,2018:S0888754318301253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700