用户名: 密码: 验证码:
油松树干横截面面积年增长量的垂直分布及与材积年增长量和叶量的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Longitudinal Distribution of Annual Stem Cross-Section Area Increment of Pinus tabulaeformis and Its Relationships with Annual Volume Increment and Leaf Biomass
  • 作者:常建国
  • 英文作者:Chang Jianguo;Shanxi Academy of Forestry Research Institute of Forestry in North China,CAF;
  • 关键词:油松 ; 横截面面积年增长量 ; 材积年增长量 ; 叶生物量 ; 垂直分布 ; 模拟
  • 英文关键词:Pinus tabulaeformis;;annual stem cross-section area increment;;annual volume increment;;leaf biomass;;longitudinal distribution;;modelling
  • 中文刊名:林业科学
  • 英文刊名:Scientia Silvae Sinicae
  • 机构:山西省林业科学研究院中国林业科学研究院华北林业研究所;
  • 出版日期:2019-06-15
  • 出版单位:林业科学
  • 年:2019
  • 期:06
  • 基金:山西省自然科学基金项目(201601D011063);; 林业科技创新平台运行补助项目(2018-LYPT-DW-006)
  • 语种:中文;
  • 页:58-67
  • 页数:10
  • CN:11-1908/S
  • ISSN:1001-7488
  • 分类号:S718.5
摘要
【目的】揭示油松树干横截面面积年增长量(RAI)的垂直分布特征和主要控制机制,验证Cortini等(2013)建模方法和模型形式在油松上的应用效果,确定基于RAI模拟预测材积年增长量和单木叶生物量的理想模型和树干位置。【方法】在9个不同年龄和竞争状态的油松林内选取27株10~98年生样木,于不同树干位置截取312个圆盘测算并分析各样木的RAI垂直分布模式,比较其与各理论模式的异同,揭示相关机制;基于Cortini等(2013)建模方法和模型形式构建油松RAI垂直分布模型,根据拟合优度等验证并评价其应用效果;在不同RAI垂直分布模式和整体水平,比较分析不同树干位置RAI与全树干水平的差异及与材积年增长量和单木叶生物量的关系,确定理想模型和树干位置。【结果】油松RAI垂直分布包括2种模式,差异主要源自树干中间区,有效树冠区和膨大区RAI分布分别与水分传输和机械支持的理论模式相近,而中间区RAI分布与各理论模式的异同因样木而异; RAI垂直分布模型可解释其垂直变异的82.76%;不同模式和整体水平,有效树冠基部RAI与全树干水平的差异均小于其他位置,胸高处RAI与单木叶生物量的关系均优于其他位置,而与材积增长量的异同因模式而异,或优于其他位置或略差于理想位置。【结论】水分传输和机械支持需求分别决定有效树冠区和膨大区的RAI垂直分布,二者的相对重要性及生物环境等因子共同决定树干中间区的分布; Cortini等(2013)建模方法和模型形式在油松上的应用效果良好;有效树冠基部对全树干水平的代表性较高,在胸高处测算RAI并据此预测材积年增长量是有效但存有缺陷的方法,对单木叶生物量的模拟预测效果良好。
        【Objective】 This study was to reveal the characteristics and key control mechanism of annual stem cross-section area increment(RAI)longitudinal distribution of Pinus tabulaeformis, to verify the application effects of Cortini et al.(2013) modeling method and model form on developing RAI longitudinal distribution model of Pinus tabulaeformis, and to choose the stem positions whose RAI could represent the RAI at whole stem level and could predict annual volume increment and leaf biomass effectively.【Method】 312 cross-sectional disks were obtained along the stem from 27 destructively sampled trees varying in age from 10 to 98 a in 9 stands,the RAI data obtained from annual ring width measurement on disks was used to analyze the RAI longitudinal distribution patterns of sampled trees,and the patterns were compared with the theoretical patterns to reveal key control mechanism. The RAI longitudinal distribution model of Pinus tabulaeformis was developed according to the method of Cortini et al.(2013), and its application effect was verified and evaluated according to the goodness of fit. The differences between the RAI at different stem positions with that at tree level, and the relationship between RAI at different stem positions with annual volume increment and leaf biomass of single tree was analyzed in the different RAI longitudinal patterns and at the overall level to determine the ideal positions and relationship models.【Result】 The RAI longitudinal distribution included two patterns according to the distribution difference in stem middle segments, the RAI distribution in effective crown segment and butt swell segment was close to the theoretical patterns derived from water transport and mechanical support theory respectively, the consistency of distribution in middle stem segment with theoretical patterns varied with sample trees. The model of RAI longitudinal distribution for Pinus tabulaeformis could explain 82.76% of the longitudinal variation of RAI. The difference between the RAI at effective crown base with that at the whole stem level was lower than that at other stem positions, the relationship between the RAI at breast height with the single-tree leaf biomass was better than that at other positions, the relationship between the RAI at breast height with annual volume increment varied with RAI longitudinal distribution pattern, which was better than other locations or slightly worse than that at the ideal location.【Conclusion】 The water transport and mechanical support requirements determined the RAI longitudinal distribution of effective canopy and butt swell segment respectively, their relative importance and biological environment factors determined RAI distribution of middle stem segment. Cortini et al.(2013) modeling method and model form was reliable to develop RAI longitudinal distribution model of Pinus tabulaeformis. The RAI at effective crown base was highly representative of that at whole stem level, the RAI at breast height was effective predictive variable, but was defective to represent RAI at whole stem level and to predict annual volume increment.
引文
杨继镐,王国祥,华网坤,等.1993.太行山适地适树评价.北京:中国林业出版社,233.(Yang J G,Wang G X,Hua W K,et al.1993.Evaluation of matching tree species with site in Taihang Mountain.Beijing:China Forestry Publishing House,233.[in Chinese])
    Arbaugh M J,Peterson D L.1993.Stemwood production patterns in ponderosa pine:effects of stand dynamics and other factors.Research Paper Psw,7(217):R1-11.
    Barczi J F,Rey H,Caraglio Y,et al.2008.AmapSim:a structural whole-plant simulator based on botanical knowledge and designed to host external functional models.Annals of Botany,101(8):1125-1138.
    Biondi F,Qeadan F.2008.A theory-driven approach to tree-ring standardization:defining the biological trend from expected basal area increment.Tree-Ring Research,64(2):81-96.
    Bouriaud O,Bréda N,Dupouey J L,et al.2005.Is ring width a reliable proxy for stem-biomass increment?A case study in European beech.Canadian Journal of Forest Research,35(12):2920-2933.
    Carmean W H.1972.Site index curves for upland oaks in the central states.Forest Science,18(2):109-120.
    Chenlemuge T,Schuldt B,Dulamsuren C,et al.2015.Stem increment and hydraulic architecture of a boreal conifer ( Larix sibirica ) under contrasting macroclimates.Trees,29(3):623-636.
    Chhin S,Hogg E H,Lieffers V J,et al.2010.Growth-climate relationships vary with height along the stem in lodgepole pine.Tree Physiology,30(3):335-345.
    Corona P,Romagnoli M,Torrini L.1995.Stem annual increments as ecobiological indicators in Turkey oak (Quercus cerris L.).Trees,10(1):13-19.
    Cortini F,Groot A,Filipescu C N.2013.Models of the longitudinal distribution of ring area as a function of tree and stand attributes for four major Canadian conifers.Annals of Forest Science,70(6):637-648.
    Courbet F.1999.A three-segmented model for the vertical distribution of annual ring area:application to Cedrus atlantica Manetti.Forest Ecology and Management,119(1/3):177-194.
    Dean T J,Roberts S D,Gilmore D W,et al.2002.An evaluation of the uniform stress hypothesis based on stem geometry in selected North American conifers.Trees,16:559-568.
    Deleuze C,Houllier F.2002.A flexible radial increment taper equation derived from a process-based carbon partitioning model.Annals of Forest Science,59(2):141-154.
    Deleuze C,Houllier F.1995.Prediction of stem profile of Picea abies using a process-based tree growth model.Tree Physiology,15(2):113-120.
    Enquist B J.2002.Universal scaling in tree and vascular plant allometry:toward a general quantitative theory linking plant form and function from cells to ecosystems.Tree Physiology,22(15/16):1045-1064.
    Fonweban J,Gardiner B,Macdonald E.2011.Taper functions for Scots pine (Pinus sylvestris L.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) in Northern Britain.Forestry,84:49-60.
    Gaffrey D,Sloboda B.2001.Three mechanics,hydraulics and needle mass distribution as a possible basis for explaining the dynamics of stem morphology.Journal of Forest Science,6:241-254.
    Grier C C,Waring R H.1974.Notes:conifer foliage mass related to sapwood area.Forest Science,20(3):205-206.
    Jajr K,Maguire D A.2000.Influence of vertical foliage structure on the distribution of stem cross-sectional area increment in western hemlock and balsam fir.Forest Science,46(1):86-94.
    Kershaw A,Maguire A.2000.Influence of vertical foliage structure on the distribution of stem cross-sectional area increment in western hemlock and balsam fir.Forest Science,46(1):86-94.
    Latte N,Lebourgeois F,Claessens H.2016.Growth partitioning within beech trees (Fagus sylvatica L.) varies in response to summer heat waves and related droughts.Trees,30(1):189-201.
    Leblanc D C.1990.Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface Mountain,New York.Canadian Journal of Forest Research,20(9):1399-1407.
    Lehnebach R,Beyer R,Letort V,et al.2018.The pipe model theory half a century on:a review.Annals of Botany,5:1-23.
    Lovisolo C,Schubert A,Sorce C.2002.Are xylem radial development and hydraulic conductivity in downwardly-growing grapevine shoots influenced by perturbed auxin metabolism?New Phytologist,156:65-74.
    Marchand P J.2011.Sapwood area as an estimator of foliage biomass and projected leaf are.Canadian Journal of Forest Research,14(14):85-87.
    Max T A,Burkhart H E.1976.Segmented polynomial regression applied to taper equations.Forest Science,22:283-289.
    Moore J R,Cown D J,Lee J R,et al.2014.The influence of stem guying on radial growth,stem form and internal resin features in radiata pine.Trees,28(4):1197-1207.
    Ogawa K.2015.Mathematical consideration of the pipe model theory in woody plant species.Trees,29(3):695-704.
    Pressler M R.1864.Das gesetz der stammbildung.Arnoldische Buchhandlung,Leipzig,153.
    Shinozaki K,Yoda K,Hozumi K,et al.1964.A quantitative analysis of plant form-the pipe model theory.I.Basic analyses.Japanese Journal of Ecology,14:97-105
    Stancioiu P T,O’Hara K L.2005.Sapwood area-leaf area relationships for coast redwood.Canadian Journal of Forest Research,35(5):1250-1255.
    Stephenc S,Robert V P,Georgew K,et al.2010.Increasing wood production through old age in tall trees.Forest Ecology & Management,259(5):976-994.
    Uggla C,Mellerowicz E J,Sundberg B.1998.Indole-3-acetic acid controls cambial growth in scots pine by positional signaling.Plant Physiology,117(1):113.
    West G B,Brown J H,Enquist B J.1999.A general model for the structure and allometry of plant vascular systems.Nature,400(6745):664-667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700