地质技术勘探和土壤取样用空茎轴螺旋钻使用的标准操作规程
详细信息   
文摘

Hollow-stem augers are frequently used for geotechnical exploration. Often, hollow-stem augers are used with other sampling systems, such as split barrel penetration resistance testing, Test Method D 1586,tmref rid="a00006"> or thin-wall tube sampling, Practice D 1587tmref rid="a00007"> (see 2.5). Hollow-stem augers may be used to advance a drill hole without sampling using a pilot bit assembly, or they may be equipped with a sampling system for obtaining soil cores. In some subsurface conditions that contain cohesive soils, the drillhole can be successfully advanced without the use of a pilot bit assembly. Intermittent drilling (advancing of the HSA column with or without a pilot bit) and sampling can be performed depending on the intervals to be sampled, or continuous sampling can be performed. During pauses in the drilling and sampling process, in situ testing or other soil sampling methods can be performed through the hollow auger column below the lead auger assembly. At completion of the boring to the depth of interest, the hole may be abandoned or testing or monitoring devices can be installed. Hollow-stem auger drilling allows for drilling and casing the hole simultaneously, thereby eliminating hole caving problems and contamination of soil samples (2). The hollow-stem auger drilling and sampling method can be a satisfactory means for collecting samples of shallow unconsolidated subsurface materials (2). Additional guidance on use can be found in Refs. 2, 3, 4, 5, 6.

Soil sampling with a double-tube hollow-stem sampling system provides a method for obtaining continuous or intermittent samples of soils for accurate logging of subsurface materials to support geotechnical testing and exploration. A wide variety of soils from clays to sands can be sampled. The sampling systems can be particularly effective in dry soft to stiff clayey or silty deposits but also can work well under saturated conditions. Saturated cohesionless soils such as clean sands may flow and cave during drilling (see Note 1). In many cases, the HSA soil core sampling system can produce very little disturbance to the sample and can provide samples for laboratory tests for measurement of selected engineering properties. Large-diameter soil cores, if taken carefully, can provide Class C and D samples as described in Practice D 4220tmref rid="a00010">. The HSA systems can also provide disturbed samples of unsaturated sands and gravels with some structure preserved. Full 5-ft (1.5-m) long cores usually cannot be obtained in unsaturated sands due to increasing side wall friction between the dry sands and inside surface of the sample core barrel. Sample length of 2 to 2.5 ft. (0.60 to 0.75 m) is generally the limit of amount of sample that can be recovered in unsaturated sands before the friction between the sampler and the sand becomes too high and causes blocking or plugging of the sampler. Shorter large diameter core runs of 2.5 ft with the 5-ft sample barrel system, or with a 2.5-ft sample barrel system, have generally proven to result in the best samples.

Note 18212;Research on thin-wall piston sampling in clean sands indicates that in general it is impossible to obtain truly undisturbed samples of saturated clean sands. These soils can dilate or collapse upon insertion of a sampling tube. The hollow-stem auger double-tube system can only obtain partitially disturbed samples of sands below the water table.

Hollow-stem auger drilling is considered a shallow drilling method with maximum depth of drilling of 200 to 300 ft (60 to 90 m) depending on torque and pull down/retract capacity of the drilling equipment and subsurface conditions of the formation(s) encountered. Saturated loose unconsolidated deposits further limit maximum depth that can be attained. Hollow-stem augers can act as casings.......

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700