长江河口动量系数时空变化规律研究
详细信息   下载全文 | 推荐本文 |
摘要
利用近期实测资料,对长江河口肖山—口门区域的动量系数进行时间和空间分布规律研究;在此基础上,得出动量系数边滩和深槽分布的差异性,并建立了经验曲线.主要结论:动量系数近口段和河口段一般为洪季大于枯季,但北槽进口枯季大于洪季;洪季肖山—石化下大潮大于小潮,枯季时肖山—狼山沙为大潮大于小潮,徐六泾—石化下为大潮小于小潮;洪季以潮流界作为界限,潮流界以下向海方向动量系数表现为增加趋势;在空间上,北港大于南港,北槽大于南槽;引起这一差异的主要原因为不同时间和空间径流和潮流水动力差异所致.以-15 m水深划分近口段边滩和深槽,边滩区域动量系数随水深增大而增加,深槽区域动量系数变化不大.
        Based on the measured data of Xiaoshan to Yangtze Estuary reach,the temporal and spatial distribution law of momentum coefficients was studied.Then the difference of coefficients in beaches and deep trough was obtained and the empirical curve was established.The results showed that the momentum coefficients in wet seasons were higher than that in dry seasons in the estuary,while the law was totally contrary in the North Passage.The coefficients in spring tidal were higher than those in neap tidal from Xiaoshan to Shihuaxia in wet seasons.In dry seasons, the coefficients in spring tidal were higher than those in neaps tidal from Xiaoshan to Langshashan and the law was contrary from Xuliujing to Shihuaxia.The tidal limit was the boundary that the downstream coefficients of it were increasing.The coefficients in North Channel were higher than those in South Channel and the coefficients in North Passage were higher than those in South Passage.The main reason of this phenomenon was the temporal and spatial variation of driving forces of runoff and tide.The water depth of 15 m was thinking as the demarcation of point bars and deep troughs.The momentum coefficients increased with the increase of the water depth in the point bars and the coefficients didn't change much in the deep troughs.The empirical curve was also established.
引文
[1]SONG Z Y,LIU Y F.Corrected formula of bed resistance coefficient for plane numerical simulation of total current [J].China Ocean Engineering,2000,14(2):221-227.
    [2]JI L J,WU B,CHEN K,et al.Momentum correction coefficient for two jet flows mixing in a tee junction[J]. Chemical Engineering Research and Design,2009,(87):1065-1068.
    [3]茅泽育,罗舜,赵升伟,等.等宽明渠交汇口水流一维数学模型[J].水利学报,2004,(8):1-10.
    [4]汤立群.物理成因产沙模型研究中函待解决的几个问题[J].泥沙研究,1999,(5):22—28.
    [5]周明德.粘土局部冲刷与模拟相似[J].水利学报,1998,(7):60—63.
    [6]宋志尧,李荣辉.一种适用于潜坝流场计算的全流模型[J].河海大学学报,2002,30(3):24—26.
    [7]黄辉,李冰冻,李克锋.丁坝附近区域水流动能修正系数研究[J].东北水利水电,2005,23(246):46—48,56.
    [8]哈岸英,吴腾,陈刚.冲积河流滩槽定量划分方法及应用[J].水利学报,2012,43(1):10—14.
    [9]吴腾,朱瑞虎.漫滩水流动量修正系数特征分析与模拟[J].水道港口,2011,32(1):54—59.
    [10]吴腾.多沙河流水库自适应性控制运用研究与应用[D].北京:清华大学博士论文,2008,25—30.
    [11]YANG K,CAO S,LIU X.Transverse Kinetic Energy Correction Coefficient in Hydraulic Computation of Compound Channels[C]//Proceedings of the International Symposium on River Sedimentation,October,Yichang, China,2004:1247-1252.
    [12]郭振仁.明渠流能量耗散率沿程分布规律[J].泥沙研究,1990(3):79—86.
    [13]宋志尧,章卫胜.长江口动量系数分布特征研究[J].水科学进展,2003,14(3):354—357.
    [14]章卫胜,宋志尧,孔俊.长江口动量系数计算与分析[C]//第十一届中国海岸工程学术研讨会暨2003年海峡两岸港口及海岸开发研讨会论文集,2003:144—148.
    [15]FALCONER R A.Numerical model of tidal circulation in harbors[J].J of the Water way Port Coastal and Ocean Division,1989,19(2):37-71.
    [16]杨云平,李义天,韩剑桥,等.长江口潮区和潮流界变化对工程响应[J].泥沙研究,2012.(6):46—51.
    [17]杨云平,李义天,王冬,等.长江河口滞流点研究进展[J].泥沙研究,2011,(6):1—6.
    [18]刘杰,陈吉余,徐志扬.长江口深水航道治理工程实施后南北槽分汉段河床演变[J].水科学进展,2008,19(5): 605—612.
目录

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700