江西大吉山钨多金属矿床流体包裹体研究
详细信息   下载全文 | 推荐本文 |
摘要
大吉山钨矿床是赣南地区的一个大型钨多金属矿床,由石英脉型钨矿体和花岗岩浸染型钨、钽、铌、铍矿体构成。在详细的岩相学观察的基础上,文章采用"流体包裹体组合"法,对石英脉型矿体和花岗岩浸染型矿体石英中的流体包裹体进行了显微测温和拉曼探针分析。研究表明,与石英脉型矿体成矿相关的流体为中-高温、中-低盐度的NaCl-H2O-CO2-CH4±N2体系,与花岗岩浸染型矿体成矿相关的流体为高温、中-低盐度的NaCl-H2O±CO2±CH4体系,两者流体的性质不同。笔者认为,在流体体系冷却过程中,所发生的以CO2逸失为特征的流体不混溶作用是石英脉型矿体的主要形成机制,而花岗岩浸染型矿体中金属元素的沉淀则主要由流体体系的冷却作用所致,这两类矿体的成矿流体的来源可能不同。
        The Dajishan tungsten deposit,a large W-polymetallic deposit in southern Jiangxi Province,consists of quartz-vein type ore bodies and granite-disseminated type ore bodies.Based on detailed petrographic observations and using the means of Fluid Inclusion Assemblage(FIA),the authors carried out microthermometric and Raman microspectroscopic studies of fluid inclusions in quartz vein type and granite disseminated type ore bodies in the Dajishan tungsten deposit.The results show that the quartz vein-type ore mineralization was related to mesothermal-hypothermal fluids of the NaCl-H2O-CO2-CH4±N2 system with low salinities,while granite-disseminated mineralization was related to hypothermal fluids of the NaCl-H2O±CO2±CH4 system with mid-low salinities,suggesting that the properties of these two ore-forming fluids were different.The characteristics of fluid inclusions in the Dajishan tungsten deposit indicate that the fluid immiscibility caused by CO2 escaping possibly led to the precipitation of metals in the quartz-vein type ore body during the cooling process of the fluid system,and the cooling of the fluid led to the precipitation of metals in the granite disseminated type ore body.The sources of ore-forming fluids for the two types of ore bodies were probably different.
引文
曹钟清.2004.大吉山钽铌钨矿床地质特征及找矿模型[J].地质与勘探,40(6):34-37.
    池国祥,卢焕章.2008.流体包裹体组合对测温数据有效性的制约及数据表达方法[J].岩石学报,24(9):1945-1953.
    华仁民,张文兰,陈培荣,王汝成.2003.赣南大吉山与漂塘花岗岩及有关成矿作用特征对比[J].高校地质学报,9(4):609-619.
    胡芳芳,范宏瑞,杨奎锋,沈昆,翟明国,金成伟.2007.胶东牟平邓格庄金矿床流体包裹体研究[J].岩石学报,23(9):2155-2164.
    蒋国豪,胡瑞忠,谢桂青,赵军红,唐群力.2004.江西大吉山钨矿成矿年代学研究[J].矿物学报,24(3):253-256.
    蒋国豪,胡瑞忠,谢桂青,赵军红.2005.大吉山花岗岩体黑云母地球化学特征及其成岩成矿意义[J].矿物岩石,(5):58-61.
    李献华,胡瑞忠,饶冰.1997.粤北白垩纪基性岩脉的年代学和地球化学[J].地球化学,26(2):14-31.
    李毅,杨佑.1991.茅坪钨锡矿床基本地质特征[J].矿产与地质,5(4):284-292.
    刘宁强,於崇文.2009.大吉山钨矿断裂系统复杂性[J].地学前缘,16(4):320-325.
    卢焕章,施继锡,喻茨枚.1974.华南某矿区成岩成矿温度的研究[J].地球化学,(3):146-156.
    卢焕章,施继锡,喻茨玫.1975.某含铌钽花岗岩成岩成矿温度的研究[J].地球化学,(3):210-223.
    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体(第一版)[M].北京:科学出版社.406-419.
    马秀娟.1988.大吉山钨矿包裹体地球化学研究[A].见:李萌清,马秀娟,魏家秀.流体包裹体在矿床学和岩石学中的应用[M].北京:北京科学技术出版社.62-112.
    邱检生,McInnes BI A,徐夕生,Allen C M.2004.赣南大吉山五里亭岩体的锆石ELA-ICP-MS定年及其与钨成矿关系的新认识[J].地质论评,50(2):125-133.
    阙梅登,夏卫华.1988.江西大吉山脉钨矿床矿化富集特征及其机理初探[J].地球科学,13(2):177-185.
    孙恭安,史明魁,张宏良,胡雄伟.1989.大吉山花岗岩体岩石学、地球化学及成矿作用的研究[A].见:宜昌地质矿产研究所.南岭地质矿产科研报告集(2)[M].武汉:中国地质大学出版社.326-363.
    滕建德.1990.大吉山矿区矿化垂直带状分布[J].矿山地质,11(2):13-23.
    席斌斌,张德会,周利敏,张文淮,王成.2008.江西省全南县大吉山钨矿成矿流体演化特征[J].地质学报,82(7):956-966.
    夏宏远,梁书艺.1987.黄沙-铁山垄含矿花岗岩演化和稀土元素地球化学[J].地球化学,(4):330-340.
    徐克勤,孙鼐,王德滋,胡受奚,刘英俊,季寿元.1984.华南花岗岩成因与成矿[A].见:徐克勤,涂光炽,主编.花岗岩地质和成矿关系(国际学术会议论文集)[C].南京:江苏科学技术出版社.1-20.
    章崇真,郑秀中,李上男.1981.赣中某矿田黑钨矿成分的时空变化特征[J].地质论评,27(3):193-198.
    张国新,谢越宁.1989.江西大吉山钨矿碳酸盐阶段白钨矿的氧同位素组成[J].地球化学,(1):77-83.
    张国新,谢越宁,虞福基,张鸿斌.1997.江西大吉山钨矿床不同成矿阶段稳定同位素地球化学[J].地球学报,18(增刊):197-199.
    张文兰,华仁民,王汝成.2003.大吉山钨矿中钨铌锰矿与富钨铌锰矿的交生现象及其成因探讨[J].矿床地质,22(2):158-165.
    张文兰,华仁民,王汝成,李惠民,陈培荣.2004.江西大吉山五里亭花岗岩单颗粒锆石U-Pb同位素年龄及其地质意义探讨[J].地质学报,78(3):352-357.
    张文兰,华仁民,王汝成,陈培荣,李惠民.2006.赣南大吉山花岗岩成岩与钨矿成矿年龄的研究[J].地质学报,80(7):956-962.
    张文兰,王汝成,华仁民,车旭东.2009.华南一种含钨花岗岩的确定及成因机制初探——来自大吉山69#岩体中浸染状钨团块的证据[J].矿物学报,(增刊):41-42.
    Beuchat S,Moritza R and Pettkeb T.2004.Fluid evolution in the W-Cu-Zn-Pb San Cristobal vein,Peru:Fluid inclusion and stable iso-tope evidence[J].Chem.Geol.,210:201-224.
    Dubessy J.1984.Si mulation deséquilibres chi miques dansle systéme C-O-H:Conséquences métodologiques pour les inclusions fluides[J].Bull.Minéral.,107:155-168.
    Giamello M,Protano G,Riccobono F,et al.1992.The W-Mo depositof Perda Majori(SE Sardinia,Italy):Afluidinclusion study of oreand gangue minerals[J].Eur.J.Mineral,4:1079-1084.
    Goldstein R Hand Reynolds TJ.1994.Systematics of fluidinclusionsindiagenetic minerals[R].SEPMShort Course,31:199.
    Goldstein R H.2003.Petrographic analysis of fluid inclusions[A].In:Samson I,Anderson Aand Marshall D,eds.Fluidinclusions-analy-sis and interpretation[R].Mineralogical Association of Canada,Short Course Series,32:9-53.
    Hall D L,Sterner S Mand Bodnar RJ.1988.Freezing point depressionof NaCl-KCl-H2Osolutions[J].Econ.Geol.,83:197-202.
    Hedenquistn J W,Arribas AJr and Reynolds TJ.1998.Evolution of anintrusion-centere hydrothermal system:Far Southeast-Lepanto por-phyry and epithermal Cu-Au deposits,Philippines[J].Econ.Geol.,93(4):373-404.
    Higgins NCand Kerrich R.1982.Progressive18Odepletion during CO2separation froma carbon dioxide-rich hydrothermal fluid:Evidencefromthe Grey River tungsten deposit,Newfoundland[J].Can.J.Earth.Sci.,19:2247-2257.
    Kreulen Rand Schuiling R D.1982.N2-CH4-CO2fluids during forma-tion of the D me del’Agout,France[J].Geochi m.Cosmochi mAc-ta,46:193-203.
    Li G L,Hua R M,Zhang WL,Hu D Q,Wei X L,Huang X E,XieL,Yao J Mand Wang X D.2011.He-Ar isotope composition ofpyrite and wolframite in the Tieshanlong tungsten deposit,Jiangxi,China:I mplications for fluid evolution[J].Resource Geology,66(4):356-366.
    Lynch J V G.1989.Hydrothermal alteration,veining,and fluid inclu-sion characteristics of the Kalzas wolframite deposit,Yukon[J].Can.J.Earth.Sci.,26:2106-2115.
    Naden J and Shepherd TJ.1989.Role of methane and carbon dioxideingold deposition[J].Nature,342:793-795.
    O’Reilly C,Gallagher V and Feely M.1997.Fluid inclusion study ofthe Ballinglen W-Sn-sulphide mineralization,SE Ireland[J].Mineralium Deposita,32:569-580.
    Polya D A.1989.Chemistry of the main-stage ore-forming fluids of thePanasqueira W-Cu(Ag)-Sn deposit.Portugal:I mplications formodels of ore genesis[J].Econ.Geol.,84:1134-1152.
    Ramboz C,Schnapper Dand Dubessy J.1985.The P-V-T-X-fO2evo-lution of H2O-CO2-CH4-bearing fluids in a wolframite vein:Recon-struction from fluid inclusion studies[J].Geochi m.Cosmochi m.Acta,49:205-219.
    Roedder E.1984.Fluidinclusions[M].Mineralogical Society of Ameri-ca,Reviews in Mineralogy,12:644.
    Samson I M.1990.Fluid evolution and mineralization in a subvolcanicgranite stock:The Mount Pleasant W-Mo-Sn deposits,NewBrunswick,Canada[J].Econ.Geol.,85:145-163.
    Seal R RII,Clark A Hand Morrissey C J.1987.Stockwork tungsten(scheelite)-molybdenum mineralization,Lake George,SouthwesternNew Brunswick[J].Econ.Geol.,82:1259-1282.
    Shepherd TJ,RanKin Aand Alderton D H M.1985.Apractical guideto fluidinclusion studies[M].Blackie&Son Li mited.154p.
    Sibaon R H,Moore J Mand Rankin A H.1975.Seismic pumping:Ahydrothermal fluid transport mechanism[J].Journal of the Geologi-cal Society,131(6):653-659.
    So C S and Yun S T.1994.Origin and evolution of W-Mo-producingfluids in a granitic hydrothermal system:Geochemical studies ofquartz vein deposits around the Susan granite,Hwanggangri dis-trict,Republic of Korea[J].Econ.Geol.,89:246-267.
    Wang X D,Ni P,Jiang S Y,Zhao K Dand Wang T G.2010.Origin ofore-forming fluids of the Piaotang tungsten deposit in JiangxiProvince:Evidence from helium and argon isotopes[J].ChineseScience Bulletin,55(7):628-634.
    Wilkinson J J.2001.Fluid inclusions in hydrothermal ore deposits[J].Lithos,55:229-272.
    Wood S Aand Samson I M.2000.The hydrothermal geochemistry oftungstenin granitoid environments:I.Relative solubilities of fer-berite and scheelite as a function ofT,P,pHand mNaCl[J].Econ.Geol.,95:143-182.
目录

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700