安徽铜陵冬瓜山大型铜矿:海底喷流-沉积与矽卡岩化叠加复合成矿过程
详细信息   下载全文 | 推荐本文 |
摘要
冬瓜山铜矿是长江中下游成矿带铜陵矿集区内的一个大型铜矿。该矿床被惯称为矽卡岩型矿床,但具明显的层控特征。主矿体呈层状、似层状,赋存于上石炭统碳酸盐建造与下伏上泥盆统砂岩建造的接触带附近,主要由一系列层控块状含铜硫化物透镜体、含铜矽卡岩透镜体、磁铁矿矿囊以及层状含铜黄铁矿-蛇纹石矿席组成。主矿体的底部为根植于上泥盆统砂岩建造内的层控脉状-网脉状矿,下部为层状含铜黄铁矿+蛇纹石矿席,主体为块状含铜硫化物透镜体与上覆硬石膏层构成的三个硫化物-硫酸盐韵律单元。该"双层结构"特征总体类似于VMS和SEDEX型矿床,但矿石结构构造表明,这些硫化物-硫酸盐沉积均不同程度地遭受了后期热液-变质作用叠加改造。层控含铜矽卡岩通常发育于块状含铜硫化物透镜体之上,小型磁铁矿矿体或矿囊通常围绕陡倾的闪长岩株零星分布。这两类矿化均与燕山期岩浆活动(约137Ma)和石英二长闪长岩株侵位密切相关。矿区可见两种蚀变作用:石英-绢云母蚀变与矽卡岩蚀变。前者在下盘砂岩中形成似整合蚀变带,包裹层控网脉状矿,其成因可解释为晚石炭世热液流体在海底之下砂岩透水层内发生侧向迁移、弥散排泄及金属卸载;后者由燕山期石英二长闪长岩侵位引起,形成两类矽卡岩,其中,镁质矽卡岩发育在层状含铜黄铁矿-蛇纹石矿席,钙质矽卡岩形成层控含铜矽卡岩透镜体。冬瓜山矿床80件硫化物样品的硫同位素δ34S组成介于0.5‰~8.8‰之间,伴生的硬石膏δ34S介于14.8‰~20.5‰之间,暗示两者的热液S有不同的来源:弱变质的细粒层纹状硬石膏,硫同位素δ34S为20.5‰,表明S来源于晚石炭世海水硫酸盐;弱变质的胶状细粒黄铁矿,δ34S变化于1.3‰~5.5‰之间,反映了热液S来自于海水硫酸盐的生物还原;热变质的晶质黄铁矿,硫同位素组成随结晶程度和颗粒大小的增加而升高(平均δ34S:4.4‰→5.3‰→5.7‰),暗示热液S可能部分来自矽卡岩-岩浆热液系统。冬瓜山矿床的矿化结构、矿体形态、结构构造、流体包裹体特征以及热液蚀变带与铜矿体的空间分布表明,冬瓜山铜矿是两期成矿叠加复合的产物:晚石炭世海底喷流-沉积作用,形成块状含铜硫化物矿化体,晚侏罗世岩浆侵位诱发矽卡岩-热液系统,叠加改造早期块状含铜硫化物和硫酸盐,形成以矽卡岩铜矿为主体的叠合型矿床。
        The Dongguashan deposit in the Shizishan district,eastern China,is a large mineralized copper system within the Middle-Lower Yangtze metallogenic belt,which occurs in an intra-continental environment,and underwent a prolonged geologic history from Late Paleozoic continental rifting,through Middle Triassic continent-continent collision,to Jurassic-Cretaceous intra-continental deformation and magmatism.The main orebody occurs as a stratabound tabular system at the boundary between Upper Carboniferous carbonates and an underlying Upper Devonian sandstone sequence.It mainly consists of massive Cu sulfide lenses,stratiform Cu skarns,laminated Cu pyrite-serpentine sheet,and small anhydrite lenses.The laminated Cu pyrite-serpentine sheet is generally underlain by stratabound stringer Cu ore lenses in the Devonian footwall sandstone,whereas massive Cu sulfide lenses and overlying anhydrite layers (lenses) comprise three rhythmic sulfide-sulfate units in the main orebody.The stratiform Cu skarns commonly overlie the massive Cu sulfide lenses and are associated with sills that intruded along anhydrite layers in the host sequence,whereas small satellite magnetite orebodies commonly surround the steeply plunging quartz monzodioritic stocks (~137Ma).There are two main styles of alteration: subconcordant quartz-sericite alteration in the sandstone footwall;and prograde and retrograde skarn alteration,with associated Cu-Fe mineralization,related to intrusion of quartz monzodioritic stocks.The first style of alteration generally envelopes the stringer Cu ore lenses,and probably reflects diffusive discharge of submarine hydrothermal fluids during the Late Carboniferous.The second alteration style is expressed as ① magnesian skarn in the laminated Cu pyrite-serpentine sheet,and ② calcareous skarn widely occurring as stratiform Cu skarn bodies.The prograde mineral assemblages (mainly garnet and diopside) of both skarns were commonly metasomatized by tremolite,actinolite,chlorite,epidote,calcite and quartz during retrograde skarn alteration.Eighty sulfide samples from the deposit yielded a range of δ34S values from 0.5‰ to 8.8‰,whereas associated anhydrites yielded δ34S values varying between 14.8‰ and 20.5‰,implying two separated sources for hydrothermal sulfur at Dongguashan.There is a striking correlation between texture and δ34S values of pyrites and anhydrites.The laminated,fine-grained anhydrites have a heavier δ34S value (20.5‰) than those of coarse-grained anhydrites (14.8‰),suggesting a source derived from the bacteriogenic reduction of Late Carboniferous seawater sulfate.Colloform and fine-grained pyrites have a relatively low δ34S (1.3‰~5.5‰),whereas crystalline pyrites exhibit an increase in δ34S (av.4.4‰→5.3‰→5.7‰) with increasing grain size.Sulfide textures,fluid inclusions,and the spatial distribution of alteration zones and Cu orebodies indicate that the Dongguashan deposit is a two-stage overprinting mineralized Cu system,in which the early-formed massive Cu sulfides and overlying sulfate caps,that was produced by Late Carboniferous sedimentary-exhalative processes,were overprinted by Late Jurassic skarn Cu mineralization.
引文
①安徽省地质矿产局321地质队.1995.安徽铜陵狮子山矿区冬瓜山铜矿床南段勘探地质报告.1~224.
    ②安徽省地质矿产局321地质队.1986.安徽省青阳县峙门口硫铁矿矿床勘探地质报告.1~157.
    常印佛,董树文.1996.论中—下扬子“一盖多底”格局与演化.火山地质与矿产,17(1):1~15.
    常印佛,刘湘培,吴言昌.1991.长江中下游铜铁成矿带.北京:地质出版社,1~379.
    陈帮国.2001.铜陵狮子山矿田花树坡铜矿床地质特征及矿床成因浅析.矿产与地质,15:243~246.
    邓军,黄定华,王庆飞,孙忠实,万丽,高帮飞.2004.铜陵矿集区印支-燕山期盖层形变场三维结构的实验重塑.中国科学(D辑),34(11):993~1001.
    狄永军.2003.安徽铜陵地区燕山期岩浆作用的深部作用.博士论文,中国地质大学(北京),1~80.
    顾连兴,徐克勤.1986.论长江中、下游中石炭世海底块状硫化物矿床.地质论评,60(2):176~187.
    黄许陈,储国正,周捷,张成火,吴才来,黄华盛,温春齐,师其政.1994.安徽铜陵地区成矿物质和含矿流体来源问题的探讨.安徽地质4(3):1~9
    侯增谦,侯立纬,叶庆同,刘福禄,唐国光.1995.三江地区义敦岛弧构造-岩浆演化与火山成因块状硫化物矿床.北京:地质出版社.
    侯增谦,杨岳清,曲晓明,黄典豪,吕庆田,王海平,余金杰,唐绍华.2004.三江地区义敦岛弧造山带演化和成矿系统.地质学报,78(1):109~120.
    侯增谦,韩发,夏林圻,等.2003.现代与古代海底热水成矿作用.北京:地质出版社,1~423.
    李文达,王文斌,范洪源,董平,周涛发,谢华光.1997.长江中下游铜(金)矿床密集区形成条件和超大型矿床存在的可能性.火山地质与矿产,20(增刊):1~131.
    凌其聪,周贵斌,黄许陈,颜玉琴.1998a.“层控式”矽卡岩矿床特征及成矿机制——以铜陵大团山铜(金)矿床为例.地质与资源,7:91~102.
    凌其聪,程惠兰,陈邦国.1998b.铜陵东狮子山铜矿床地质特征及成岩成矿机理研究.矿床地质,17(2):158~164.
    刘裕庆,刘兆廉,杨成兴.1984.铜陵地区冬瓜山铜矿的稳定同位素研究.见:中国地质科学院矿床地质研究所所刊,第1号.北京:地质出版社,70~101.
    陆建军,郭维民,陈卫锋,蒋少涌,李娟,颜晓蓉,徐兆文.2008.安徽铜陵冬瓜山铜(金)矿床成矿模式.岩石学报,24(8):1857~1864.
    蒙义峰,杨竹森,曾普胜,徐文艺,王训成.2004.铜陵矿集区成矿流体系统时限的初步厘定.矿床地质,23(3):271~280.
    倪若水.1995.长江中下游中生代沉积盆地的含矿建造.火山地质与矿产,16(2):42~54.
    唐俊华.2000.长江中下游地区层状铜矿床基本特征及成因.矿产与地质,14(2):76~80.
    唐永成,吴言昌,储国正,邢凤鸣,王永敏,曹奋扬,常印佛.1998.安徽沿江地区铜金多金属矿床地质.北京:地质出版社,1~351.
    王强,许继峰,赵振华,等.2003.安徽铜陵地区燕山期侵入体的成因及其对深部动力学过程的制约.中国科学(D辑),33(4):3232~334.
    王文斌,李文达,董平,谢华光.1994.论长江中下游地区含铜黄铁矿型矿床成因.火山地质与成矿,15(2):25~34.
    温春齐,黄华盛,刘兆廉.1996.铜陵地区石炭系铁铜矿床的矿石组构组分特征.成都理工学院学报,23(2):7~15.
    谢光华,王文斌.1995.安徽新桥铜硫矿床成矿时代及成矿物质来源.火山地质与矿产,16(27):101~107.
    徐兆文,陆建军,陆现彩,等.2000.安徽省铜陵狮子山铜金矿床地质特征及成因.矿物岩石地球化学通报,19(4):233~234.
    徐兆文,陆现彩,高庚,方长泉,王云健,杨小男,蒋少涌,陈帮国.2007.铜陵冬瓜山层状铜矿同位素地球化学及成矿机制研究.地质论评,53(1):44~51.
    杨学明,杨晓勇,王奎仁,孙立广,顾炳忠,林文通.1997.安徽铜陵老鸦岭层状铜矿床的成矿地球化学研究.大地构造与成矿学,21(4):347~361.
    杨竹森,侯增谦,蒙义峰,曾普胜,李红阳,徐文艺,田世洪,王训诚,姚孝德,姜章平.2004.安徽铜陵矿集区海西期喷流沉积流体系统时空结构.矿床地质,23(3):281~297.
    杨竹森,侯增谦,蒙义峰,王训诚,曾普胜,田世洪,姜章平,姚孝德.2002.安徽铜陵矿集区流体系统与成矿.矿床地质,21(增刊):1080~1082.
    岳文哲,业治铮,魏乃颐,姜月华,季绍新.1993.长江中下游威宁期沉积地质及硫化物矿床.北京:地质出版社,1~163.
    曾普胜,裴荣富,侯增谦,蒙义峰,杨竹森,田世洪,徐文艺,王训诚.2005.安徽铜陵矿集区冬瓜山矿床:一个叠加改造型铜矿.地质学报,79(1):106~113.
    翟裕生,姚书振,林新多,周绚若,万天丰,金方,周宗柱.1992.长江中下游铁铜(金)成矿规律.北京:地质出版社,1~235.
    翟裕生,姚书振,周宗桂,吕新彪.1999.长江中下游地区铜金矿床矿田构造研究.武汉:中国地质大学出版社,1~250.
    周涛发,岳书仓,袁峰.2000.长江中下游两个系列铜、金矿床及其成矿流体系统的氢、氧、硫、铅同位素研究.中国科学(D辑),30(增刊):122~128.
    Ames L,Tiloton G R,Zhou G.1993.Ti ming of collision of Sino-Korean and Yangzte cratons:U-Pb dating of coesite-bearingeclogites.Geology,21:339~342.
    Anderson I K,Ashton J H,Boyce AJ,Fallick A E,Russell MJ.1998.Ore depositional processes in the Navan Zn-Pb deposit,Ireland.Economic Geology,93:535~563.
    Bodnar RJ.1995.Fluid-inclusion evidence for a magma source formetals in porphyry copper deposits.Mineralogical Associationof Canada Short Course,Series23:139~152.
    Bodnar R J.1993.Revised equation and table for determining thefreezing point depression of H2O-NaCl solutions.Geochi m.etCosmochi m.Acta,57:683~684.
    Bozzo A T.Chen R and Barduhn A J.1973.The properties ofhydrates of chlorine and carbon dioxide.In:Delyannis A andDelyannis E(eds.),Fourth International Symposiumon FreshWater fromthe Sea,3:437~451.
    Candela P A,Piccoli P M.1995.Model of ore-metal partitioningfrom meltsinto vapor and vapor/brine mixtures.In:ThompsonJ F H(edi.).Granites,fluids,and ore deposits.Short Course23,Mineralogical Association of Canada,101~128.
    Claypool C E,Holser WT,Sakai I R,ZakI.1980.The age curvesfor sulfur and oxygenisotopesin marine sulfate andtheir mutualinterpretation.Chem.Geol.,28:199~260.
    Cong Bolin,Wang Qingchen,Zhai Mingguo,Zhang Ruyuan,ZhaoZhongyan,Ye Kai.1994.Ultra-high pressure metamorphicrocks in the Dabie-Su-Lu region,China:their formation andexhumation.Island Arc,3(3):135~150.
    Eldridge C S,Barton P B J,Ohmoto H.1983.Mineral texture andtheir bearing on the information to the Kuroko orebodies.Econ.Geol.,Mon.,5:241~281.
    Fisher I S J,Hudson J D.1987.Pyrite formationin Jurassic shalesof contrasting biofacies.Geological Society of London SpecialPublications,26:69~78.
    Franklin J M,Sangster D F,Lydon J W.1981.Volcanic-associatedmassive sulfide deposits.Economic Geology75th Anna.,pp.485~627.
    Hall D L,Sterner S M,Bodnar R J.1988.Freezing pointdepression of NaCl-KCl-H2Osolutions.Economic Geology,83:197~202.
    Hedenquist J W,Arribas AJr,Reynolds TJ.1998.Evolution of anintrusion-centered hydrothermal system:Far Southeast-Lepantoporphyry and epithermal Cu-Au deposits,Philippines.Economic Geology,93:373~404.
    Hou Zengqian,Zaw Khin,Qu Xiaoming,Ye Qingtong,Yu Jinjie,Xu Mingji,Fu Deming,Yin Xianke.2001.Origin of the Gacunvolcanic-hosted massive sulphide deposit in Sichuan,China:Fluid inclusion and oxygen isotope evidence.EconomicGeology,96:1491~1512
    Hou Zengqian,Yang Zhusen,Li Yinqing,Zeng Pusheng,MengYifeng.2004.Fluid Migration to Foreland Basin During DabieOrogeny in China:Evidence from the gypsum formation andregional alteration in Yangtze Metallogenic Belt.SinicaGeologica Acta,78(1):203~220.
    Hou Zengqian,Yang Zhusen,Meng Yifeng,Zeng Pusheng,LiHongyang,Xu Wenyi.2007.Geological fluid mapping in theTongling area:I mplications for the Paleozoic submarinehydrothermal systemin the Middle-Lower Yangtze metallogenicbelt,east China.Acta Geologica Sinaca,81(5):801~840.
    Hunt I M.1990.Generation and migration of petroleum fromabnormally pressured fluid compart ments.AmericanAssociation of Petroleum Geologists Bulletin,74:1~12.
    Huston D L.1988.Aspects of the geology of massive sulfidedeposits fromthe Balcooma district,and northern Queenslandand Rosebery,Australia:i mplications for ore genesis.Unpub.Ph.Dthesis,Univ.Univ.Tasi mania,p380.
    Ishihara S.1981.The granitoid series and mineralization.EconomicGeology75th Anniversary Volume,pp.458~484
    Kesler S E,Jones L M,Walker R L.1975.Intrusive rocksassociated with porphyry copper mineralization in island arcareas.Econ.Geol.,70:515~526.
    Ki mura M,Tanaka T,Kyo M,Ando M,Oomori T,Izawa E,Yoshikawa I.1989.Studies of topography,hydrothermaldeposits and ani mal colonies in the middle Okinawa troughhydrothermal areas suing the submersible Shinkai2000system.Japan Marine Science and Technology Center,Symposium onDeep-Sea Researcher,5th,Technical Report,Proceedings:224~244
    Lambert I B.1976.The McArthur zinc-lead-silver deposit:features,metallogenesis and comparisons with some otherstratiform ores.In:Wolf K H(edi.).Handbook of strata-bound and stratiform ore deposits,Vol.6.Elsevier ScientificPublishing Company,Amsterdam,pp.535~585
    Large D E.1981.Sedi ment-hosted submarine exhalative lead-zincdeposits-Areviewof their geological characteristics and genesis.In:Wolf K H(edi.).Handbook of strata-bound and stratiformore deposits,Vol.9.Elsevier Scientific Publishing Company,Amsterdam,pp.469~507.
    Large R R.1992.Australian volcanic-hosted massive sulfidedeposits:features,styles and genetic models.EconomicGeology,87:469~470.
    Le Maitre R W(edi.).1989.Aclassification of igneous rocks andglossary of terms.Blackwell,Oxford,pp.193.
    Lydon J W.1988.Ore deposit models#14Volcanogenic massivesulfide deposits Part2:Genetic models.Geosci.Canada,15:43~65.
    McDonough WF,Sun S S,Ringwood A E,Jagoutz E,Hof mann AW.1992.Potassium,rubidium,and cesiumin the Earth andMoon and the evolution of the mantle of the Earth.Geochi micaet Cosmochi mica Acta,56(3):1001~1012.
    Meinert L D,Hefton K K,Mayes D,Tasiran I.1997.Geology,zonation,and fluid evolution of the Big Gossan Cu-Au skarndeposit,Ertsberg district,Iran Jaya.Economic Geology,92:509~534.
    Ohmoto H,Mizukami M,Drummond S E,Eldridge C S,Pisutha-Arnond V,Lenagh T C.1983.Chemical processes of Kurokoformation.Economic Geology Mon.,5:570~604.
    Pan Yuanming,Dong Ping.1999.The Lower Changjiangmetallogenic belt,east central China:intrusion-and wall rock-hosted Cu-Fe-Au,Mo,Zn,Pb,Ag deposits.Ore GeologyReviews,15(4):177~242
    Pisutha-Arnond V,Ohmoto H.1983.Thermal history,andchemical and isotopic compositions of the ore-forming fluidsresponsible for the Kuroko massive sulfide deposits in theHokuroko district of Japan.Econ.Geol.Mon.,5:523~558.
    Reid J B,Evans O C,Fates D G.1983.Magma mixing in graniticrocks of the Central Sierra Nevada,California.Earth PlanetSci.Lett.,66:243~261.
    Roedder E.1984.Fluidinclusions.In:Reviews in mineralogy,12.Washington DC,Mineralogical Society of America,646p
    Sangster D F.1976.Sulphur and lead isotopes in strata-bounddeposits.In:Wolf K H(edi.)Handbook of Strata-bound andStratiform Ore Deposits.Elsevier,Amsterdam,2:219~266
    Sawkins F J.1984.Metal deposits in relation to plate tectonics.Springer-Verlag,Berlin,325p.
    Schmidt M W.1992.Amphibole composition in tonalite as afunction of pressure:an experi mental calibration of the Al-in-hornblende barometer.Contrib.Miner.Petrol.,110:304~310.
    Tatsumi Y.1983.Generation of arc basalt magma and thermalstructure of the mantle wedge in subduction zones.Journal ofGeophysical Research,88(B7):815~825.
    Tatsumi Y.1986.Chemical characteristics of fluid phase releasedfroma subductionlithosphere and origin of arc magma:evidencefrom high pressure experi ments and natural rocks.Journal ofVolcanology and Geothermal Research,29:293~309.
    Urabe T,Sato T.1978.Kuroko deposits of the Kosaka mine,Northeast Honshu,Japan-products of submarine hot springs onMicocene seafloor.Economic Geology,73:161~179.
    Urabe T.1987.Kuroko deposit modeling based on magmatichydrothermal theory.Mining Geology,37:159~176.
    Wilcox R E.1999.The idea of magma mixing:history of a strugglefor acceptance.Jour.Geology,107:421~432.
    Yang K H,Bodnar RJ.1994.Magmatic-hydrothermal evolutioninthe“bottom”of porphyry copper systems:evidence fromsilicate melt and aqueous fluid inclusions in granitoid intrusionsin the Gyeongsang basin,South korea.International GeologyReview,36:608~628.
    Yin An,Nie Shangyou.1993.An indentation model for the Northand South China collision and the development of the Tan-Luand Honamfault systems,Eastern Asia.Tectonics,12:801~813.
    Zorpi MJ,Coulon C,Orsini J B.1991.Hybridization betweenfelsicand mafic magmas in calc-alkaline granitoids-a case study innorthern Sardinia,Italy.Chemical Geology,92:45~86.
目录

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700