重庆芙蓉洞上覆基岩、土壤元素分布特征及其对洞穴滴水水化学影响
详细信息   下载全文 | 推荐本文 |
摘要
通过对重庆芙蓉洞上覆基岩和土壤中元素分布特征以及表层岩溶泉水、土壤渗透水和洞穴滴水水化学特征的系统监测,发现Ca2+、Mg2+、Sr2+和SO42-在表层岩溶系统的基岩、土壤、水(土壤渗透水和洞穴滴水)三大载体的运移过程中发生了明显分异。Ca2+、Mg2+和Sr2+在基岩中平均质量比分别为239 949ppm、129 607 ppm和123 ppm,在土壤中分别为37 458 ppm、28 360 ppm和49ppm,土壤渗透水中分别为25.55 mg/L、11.04 mg/L和0.026 mg/L,而在洞穴滴水中分别为64.37 mg/L、37.87 mg/L和0.044 mg/L。Ca、Mg和Sr在土壤剖面中表现出明显的淋溶和淀积作用,其元素含量高低直接影响土壤渗透水元素含量;基岩的元素含量主导了土壤各层位、土壤渗透水及滴水中元素含量。不同滴水点的水其运移的路径、时间和环境条件不同,因此在利用洞穴次生化学沉积物元素地球化学特征来反映洞外环境变化时,需综合考虑各元素在岩-土-水中的分布迁移特征及其与环境因素的相互关系。
        Based on element analysis on the overlying bedrock and soil and system monitoring on cations concentration in spring water,soil infiltrating water and cave drip water in the Furong Cave,Chongqing,it is found that the concentration of Ca2+,Mg2+,Sr2+ and SO42-have obvious differentiation during the processes of migration among bedrock,soil and water in epikarst zone.The average mass ratio of Ca2+、Mg2+ and Sr2+ is 239 949 ppm,129 607 ppm and 123 ppm respectively in bedrocks;37 458 ppm,28 360 ppm and 49 ppm in soil;25.55 mg/L,11.04 mg/L and 0.026 mg/L in soil infiltrating water;64.37 mg/L,37.87 mg/L and 0.044 mg/L in cave drip water.Ca,Mg and Sr appear significant eluviation and illuviation on the soil profiles and their content directly control the concentration of corresponding element in soil infiltrating water.Additionally,as the mass source of soil,element composition in the bedrocks have considerable impact on the element content in soil and soil infiltrating water as well as cave drip water.Different cave drip waters have different transfer routes,transfer periods and environmental conditions.So,the migration process and distribution feature in bedrock-soil-water of each element and environment conditions should be considered in the reconstruction of environmental changes with the proxies of elements in speleothems.
引文
[1]Fairchild I J,Treble P C.Trace elements in speleothems as re-corders of environmental change[J].Quaternary Science Re-views,2009,28(5-6):449-468.
    [2]Fairchild I J,Borsato A,Tooth A F,et al.Controls on trace el-ement(Sr-Mg)compositions of carbonate cave waters:Implica-tions for speleothem climatic records[J].Chemical Geology,2000,166(3-4):255-269.
    [3]Jo K N,Woo K S,Hong G H,et al.Rainfall and hydrologicalcontrols on speleothem geochemistry during climatic events(droughts and typhoons):An example from Seopdong Cave,Republic of Korea[J].Earth and Planetary Science Letters,2010,295(3-4):441-450.
    [4]Gascoyne M.Trace element partition coeffieients in the calcite-water system and their paleoclimatie signifieanee in cave studies[J].Journal of Hydrology,1983,61(1-3):213-222.
    [5]Francisco W C,Wang X F,Augusto A,et al.Orbital and Mil-lennial-Scale Precipitation Changes in Brazil from SpeleothemRecords[J].Developments in Paleoenvironmental Research,2009,14(1):29-60.
    [6]Treble P,Shelley J M G,Chappell J.Comparison of high reso-lution subannual records of trace element s in a modern(1911-1992)speleothem with instrumental climate data from south-west Australia[J].Earth and Planetary Science Letters,2003,216(1-2):141-153.
    [7]Verheyden S,Keppens E,Fairchild I J,et al.Mg,Sr and Sr i-sotope geochemistry of a Belgian Holocene speleothem:implica-tions for paleoclimate reconstructions[J].Chemical Geology,2000,169:131-144.
    [8]王建力,袁道先,李廷勇,等.气候变化的岩溶记录[M].北京:科学出版社,2009:150-157.
    [9]Baker A,Genty D,Smart P.High-resolution records of soil hu-mification and paleoclimate chang from variations in speleothemluminescence excitation and emission wavelengths.[J].Geolo-gy,1998,26:903-906.
    [10]王新中,班凤梅,潘根兴.洞穴滴水地球化学的空间和时间变化及其控制因素:以北京石花洞为例[J].第四纪研究,2005,25(2):258-264.
    [11]周运超,王世杰.洞穴滴水的水文地球化学过程:贵州犀牛洞的研究[J].地球与环境,2005,33(2):25-30.
    [12]李廷勇,李红春,李俊云,等.重庆芙蓉洞洞穴沉积物δ13C,δ18O特征及意义[J].地质论评,2008,54(5):712-720.
    [13]王昕亚,李廷勇,胡蓉,等.重庆芙蓉洞洞穴滴水地球化学初探[J].西南大学学报(自然科学版),2007,29(2):122-126.
    [14]叶明阳,李廷勇,王建力,等.芙蓉洞洞穴水Ca2+,Mg2+浓度变化对气候事件的响应[J].水土保持学报,2009,23(3):82-86.
    [15]叶明阳,李廷勇,王建力,等.芙蓉洞次生碳酸盐沉积特征及与降水的关系研究[J].沉积学报2009,27(4):685-690.
    [16]陈桥,锥昆利,董明星,等.芙蓉洞洞穴演化形成所需历史时间估算方法及其地质意义[J].西北地质,2005,38(4):1-7.
    [17]朱学稳.芙蓉洞的次生化学沉积物[J].中国岩溶,1994,12(4):357-368.
    [18]陈伟海,朱德浩,黄保健,等.重庆武隆岩溶地质公园地质遗迹特征,形成与评价[M].北京:地质出版社,2004,12-25.
    [19]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:147-211.
    [20]蒋忠诚.岩溶动力系统中的元素迁移[J].地理学报,1999,54(5):438-444.
    [21]任美愕.中国地质学会第二届岩溶学术会议论文选集,科学出版社,1982,1-4.
    [22]中科院南京土壤所主编.中国土壤[M].北京:科学出版社,1978,45-47.
    [23]袁道先.碳循环与全球岩溶[J].第四纪研究,1993(1):1-6.
    [24]蒋忠诚.广西弄拉白云岩环境的岩溶地球化学迁移[J].中国岩溶,1997,16(4):304-311.
    [25]Jiang Z C.An analysis on formation of Karst Fengcong Depres-sions in China[J].Carsologica Sinica,1996,15(1):83-90.
    [26]Li H C,Bischoff J L,Ku T L,et al.Climate and hydrology ofthe last interglaciation(MIS 5)in Owens Basin,California:I-sotopic and geochemical evidence from core OL-92[J].Quater-nary Science Reviews,2004,23:49-63.
    [27]潘根兴,滕永忠.土壤-灰岩岩溶系统中水文地球化动力学过程模拟及其意义[J].地球化学,2000,29(3):272-276.
    [28]Tooth A F,Fairchild I J.Soil and karst aquifer hydrologicalcontrols on the geochemical evolution of speleothem-formingdrip waters,Crag Cave,southwest Ireland[J].Journal of Hy-drology,2003,273:51-68.
    [29]McDonald J,Drysdale R,Hill D.The 2002~2003 El Ni~no re-corded in Australian cave dripwaters:Implications for recon-structing rainfall histories using stalagmites[J].GeophysicalResearch Letters,2004,31:192-202.
    [30]Dail D B,Fitzgerald J W.Scycling in soil and stream sediment:Influence of season and in situ concentrations of carbon,nitro-gen and sulfur[J].Soil Biology and Biochemistry[J],1999,31(10):1395-1404.
    [31]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000,248-256.
目录

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700